题目内容

已知函数f(x)=lnx-ax(a∈R)
(Ⅰ)若函数f(x)无零点,求实数a的取值范围;
(Ⅱ)若存在两个实数x1,x2且x1≠x2,满足f(x1)=0,f(x2)=0,求证x1x2>e2
考点:利用导数研究函数的单调性
专题:导数的综合应用
分析:(Ⅰ)当a≤0时,函数有零点;当a>0时,极大值小于0,函数没有零点,由此可求实数a的取值范围.
(Ⅱ)由于f(x)有两个相异零点x1,x2,可知f(x1)=0,f(x2)=0,再原不等式x1•x2>e2进一步整理得到ln
x1
x2
2(x1-x2)
x1+x2
,只要能证出上述不等式恒成立即可
解答: 解(Ⅰ)①若a<0,则f′(x)>0,f(x)是区间(0,+∞)上的增函数,
∵f(1)=-a>0,f(ea)=a-aea=a(1-ea)<0,
∴f(1)•f(ea)<0,函数f(x)在区间(0,+∞)有唯一零点.
②若a=0,f(x)=lnx有唯一零点x=1.
③若a>0,令f′(x)=0得:x=
1
a

在区间(0,
1
a
)上,f′(x)>0,函数f(x)是增函数;
在区间(
1
a
,+∞)上,f′(x)<0,函数f(x)是减函数;
故在区间(0,+∞)上,f(x)的极大值为f(
1
a
)=ln
1
a
-1=-lna-1.
由于f(x)无零点,须使f(
1
a
)=ln
1
a
-1=-lna-1,解得:a>
1
e

故所求实数a的取值范围是(
1
e
,+∞).
(Ⅱ)设x1>x2>0,
∵f(x1)=0,f(x2)=0,
∴lnx1-ax1=0,lnx2-ax2=0,
∴lnx1-lnx2=a(x1-x2),lnx1+lnx2=a(x1+x2
原不等式x1•x2>e2等价于lnx1+lnx2>2?a(x1+x2)>2,
?
lnx1-lnx2
x1-x2
2
x1+x2
?ln
x1
x2
2(x1-x2)
x1+x2

x1
x2
=t,则t>1,
∴ln
x1
x2
2(x1-x2)
x1+x2
?lnt>
2(t-1)
t+1

设g(t)=lnt-
2(t-1)
t+1
,(t>1),
∴g′(t)=
(t-1)2
t(t+1)2
>0,
∴函数g(t)在(1,+∞)是递增,
∴g(t)>g(1)=0即不等式lnt>
2(t-1)
t+1
成立,
故所证不等式x1•x2>e2成立.
点评:本题主要考查了导数在函数单调性和函数极值中的应用,连续函数的零点存在性定理及其应用,分类讨论的思想方法,属中档题
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网