ÌâÄ¿ÄÚÈÝ
18£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÔ×ø±êÔµãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®ÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³Ì¦Ñ=2$\sqrt{2}$sin£¨¦È+$\frac{¦Ð}{4}$£©£®Çãб½ÇΪ$\frac{¦Ð}{3}$£¬ÇÒ¾¹ý¶¨µãP£¨0£¬1£©µÄÖ±ÏßlÓëÇúÏßC½»ÓÚM£¬NÁ½µã£¨¢ñ£©Ð´³öÖ±ÏßlµÄ²ÎÊý·½³ÌµÄ±ê×¼ÐÎʽ£¬²¢ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©Çó$\frac{1}{|PM|}$+$\frac{1}{|PN|}$µÄÖµ£®
·ÖÎö £¨I£©ÓÉÇãб½ÇΪ$\frac{¦Ð}{3}$£¬ÇÒ¾¹ý¶¨µãP£¨0£¬1£©µÄÖ±ÏßlµÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}{x=tcos\frac{¦Ð}{3}}\\{y=1+tsin\frac{¦Ð}{3}}\end{array}\right.$£®ÇúÏßCµÄ¼«×ø±ê·½³Ì¦Ñ=2$\sqrt{2}$sin£¨¦È+$\frac{¦Ð}{4}$£©£¬Õ¹¿ª£º¦Ñ2=2$\sqrt{2}¦Ñ$¡Á$\frac{\sqrt{2}}{2}$£¨sin¦È+cos¦È£©£¬ÀûÓû¥»¯¹«Ê½¿ÉµÃÖ±½Ç×ø±ê·½³Ì£®
£¨II£©°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=1+\frac{\sqrt{3}}{2}t}\end{array}\right.$´úÈëÔ²CµÄ·½³ÌΪ£ºt2-t-1=0£¬¿ÉµÃ$\frac{1}{|PM|}$+$\frac{1}{|PN|}$=$\frac{1}{|{t}_{1}|}$+$\frac{1}{|{t}_{2}|}$=$\frac{|{t}_{1}-{t}_{2}|}{|{t}_{1}{t}_{2}|}$=$\frac{\sqrt{£¨{t}_{1}+{t}_{2}£©^{2}-4{t}_{1}{t}_{2}}}{|{t}_{1}{t}_{2}|}$¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨I£©ÓÉÇãб½ÇΪ$\frac{¦Ð}{3}$£¬ÇÒ¾¹ý¶¨µãP£¨0£¬1£©µÄÖ±ÏßlµÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}{x=tcos\frac{¦Ð}{3}}\\{y=1+tsin\frac{¦Ð}{3}}\end{array}\right.$£¬»¯Îª£º$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=1+\frac{\sqrt{3}}{2}t}\end{array}\right.$£®
ÇúÏßCµÄ¼«×ø±ê·½³Ì¦Ñ=2$\sqrt{2}$sin£¨¦È+$\frac{¦Ð}{4}$£©£¬Õ¹¿ª£º¦Ñ2=2$\sqrt{2}¦Ñ$¡Á$\frac{\sqrt{2}}{2}$£¨sin¦È+cos¦È£©£¬¿ÉµÃÖ±½Ç×ø±ê·½³Ì£ºx2+y2=2x+2y£®
£¨II£©°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=1+\frac{\sqrt{3}}{2}t}\end{array}\right.$´úÈëÔ²CµÄ·½³ÌΪ£ºt2-t-1=0£¬
t1+t2=1£¬t1t2=-1£®
¡à$\frac{1}{|PM|}$+$\frac{1}{|PN|}$=$\frac{1}{|{t}_{1}|}$+$\frac{1}{|{t}_{2}|}$=$\frac{|{t}_{1}-{t}_{2}|}{|{t}_{1}{t}_{2}|}$=$\frac{\sqrt{£¨{t}_{1}+{t}_{2}£©^{2}-4{t}_{1}{t}_{2}}}{|{t}_{1}{t}_{2}|}$=$\frac{\sqrt{1+4}}{1}$=$\sqrt{5}$£®
µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢Ö±ÏßÓëÔ²ÏཻÏÒ³¤ÎÊÌ⣬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| ÓÐÃ÷ÏÔÍÏÑÓÖ¢ | ÎÞÃ÷ÏÔÍÏÑÓÖ¢ | ºÏ¼Æ | |
| ÄÐ | 35 | 25 | 60 |
| Å® | 30 | 10 | 40 |
| ×Ü¼Æ | 65 | 35 | 100 |
£¨2£©ÈôÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ýPµÄǰÌáÏÂÈÏΪÎÞÃ÷ÏÔÍÏÑÓÖ¢ÓëÐÔ±ðÓйأ¬ÄÇô¸ù¾ÝÁÙ½çÖµ±í£¬×ȷµÄPµÄֵӦΪ¶àÉÙ£¿Çë˵Ã÷ÀíÓÉ
¸½£º¶ÀÁ¢ÐÔ¼ìÑéͳ¼ÆÁ¿K2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬n=a+b+c+d
| P£¨K2¡Ýk0£© | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |