ÌâÄ¿ÄÚÈÝ

18£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®ÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³Ì¦Ñ=2$\sqrt{2}$sin£¨¦È+$\frac{¦Ð}{4}$£©£®Çãб½ÇΪ$\frac{¦Ð}{3}$£¬ÇÒ¾­¹ý¶¨µãP£¨0£¬1£©µÄÖ±ÏßlÓëÇúÏßC½»ÓÚM£¬NÁ½µã
£¨¢ñ£©Ð´³öÖ±ÏßlµÄ²ÎÊý·½³ÌµÄ±ê×¼ÐÎʽ£¬²¢ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©Çó$\frac{1}{|PM|}$+$\frac{1}{|PN|}$µÄÖµ£®

·ÖÎö £¨I£©ÓÉÇãб½ÇΪ$\frac{¦Ð}{3}$£¬ÇÒ¾­¹ý¶¨µãP£¨0£¬1£©µÄÖ±ÏßlµÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}{x=tcos\frac{¦Ð}{3}}\\{y=1+tsin\frac{¦Ð}{3}}\end{array}\right.$£®ÇúÏßCµÄ¼«×ø±ê·½³Ì¦Ñ=2$\sqrt{2}$sin£¨¦È+$\frac{¦Ð}{4}$£©£¬Õ¹¿ª£º¦Ñ2=2$\sqrt{2}¦Ñ$¡Á$\frac{\sqrt{2}}{2}$£¨sin¦È+cos¦È£©£¬ÀûÓû¥»¯¹«Ê½¿ÉµÃÖ±½Ç×ø±ê·½³Ì£®
£¨II£©°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=1+\frac{\sqrt{3}}{2}t}\end{array}\right.$´úÈëÔ²CµÄ·½³ÌΪ£ºt2-t-1=0£¬¿ÉµÃ$\frac{1}{|PM|}$+$\frac{1}{|PN|}$=$\frac{1}{|{t}_{1}|}$+$\frac{1}{|{t}_{2}|}$=$\frac{|{t}_{1}-{t}_{2}|}{|{t}_{1}{t}_{2}|}$=$\frac{\sqrt{£¨{t}_{1}+{t}_{2}£©^{2}-4{t}_{1}{t}_{2}}}{|{t}_{1}{t}_{2}|}$¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨I£©ÓÉÇãб½ÇΪ$\frac{¦Ð}{3}$£¬ÇÒ¾­¹ý¶¨µãP£¨0£¬1£©µÄÖ±ÏßlµÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}{x=tcos\frac{¦Ð}{3}}\\{y=1+tsin\frac{¦Ð}{3}}\end{array}\right.$£¬»¯Îª£º$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=1+\frac{\sqrt{3}}{2}t}\end{array}\right.$£®
ÇúÏßCµÄ¼«×ø±ê·½³Ì¦Ñ=2$\sqrt{2}$sin£¨¦È+$\frac{¦Ð}{4}$£©£¬Õ¹¿ª£º¦Ñ2=2$\sqrt{2}¦Ñ$¡Á$\frac{\sqrt{2}}{2}$£¨sin¦È+cos¦È£©£¬¿ÉµÃÖ±½Ç×ø±ê·½³Ì£ºx2+y2=2x+2y£®
£¨II£©°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=1+\frac{\sqrt{3}}{2}t}\end{array}\right.$´úÈëÔ²CµÄ·½³ÌΪ£ºt2-t-1=0£¬
t1+t2=1£¬t1t2=-1£®
¡à$\frac{1}{|PM|}$+$\frac{1}{|PN|}$=$\frac{1}{|{t}_{1}|}$+$\frac{1}{|{t}_{2}|}$=$\frac{|{t}_{1}-{t}_{2}|}{|{t}_{1}{t}_{2}|}$=$\frac{\sqrt{£¨{t}_{1}+{t}_{2}£©^{2}-4{t}_{1}{t}_{2}}}{|{t}_{1}{t}_{2}|}$=$\frac{\sqrt{1+4}}{1}$=$\sqrt{5}$£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢Ö±ÏßÓëÔ²ÏཻÏÒ³¤ÎÊÌ⣬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø