题目内容
20.一架战斗机以1000$\sqrt{2}$千米/小时速度朝东偏北45°方向水平飞行,发现正东100千米外同高度有一架民航飞机正在以800千米/小时速度朝正北飞行,如双方都不改变速度与航向,两机最小距离在哪个区间内(单位:千米)( )| A. | (0,5) | B. | (5,10) | C. | (10,15) | D. | (15,20) |
分析 建立如图所示的坐标系,t小时后,A(1000t,1000t),B(100,800t),求出|AB|,可得|AB|的最小值,即可得出结论.
解答 解:建立如图所示的坐标系,t小时后,A(1000t,1000t),B(100,800t),![]()
则|AB|=$\sqrt{(1000t-100)^{2}+40000{t}^{2}}$=$\sqrt{1040000{t}^{2}-200000t+10000}$,
t=$\frac{5}{52}$时,|AB|的最小值为$\sqrt{\frac{4×1040000×10000-20000{0}^{2}}{4×1040000}}$=$\frac{50\sqrt{26}}{13}$∈(15,20).
故选D.
点评 本题考查坐标系的运用,考查距离公式,属于中档题.
练习册系列答案
相关题目
5.函数y=logax(a>0且a≠1)的图象经过点$(\;2\sqrt{2}\;,\;-1\;)$,函数y=bx(b>0且b≠1)的图象经过点$(\;1\;,\;2\sqrt{2})$,则下列关系式中正确的是( )
| A. | a2>b2 | B. | 2a>2b | C. | ${({\frac{1}{2}})^a}>{({\frac{1}{2}})^b}$ | D. | (a${\;}^{\frac{1}{2}}$>b${\;}^{\frac{1}{2}}$) |
9.数独游戏越来越受人们喜爱,今年某地区科技馆组织数独比赛,该区甲、乙、丙、丁四所学校的学生积极参赛,参赛学生的人数如表所示:
为了解参赛学生的数独水平,该科技馆采用分层抽样的方法从这四所中学的参赛学生中抽取30名参加问卷调查.
(Ⅰ)问甲、乙、丙、丁四所中学各抽取多少名学生?
(Ⅱ)从参加问卷调查的30名学生中随机抽取2名,求这2名学生来自同一所中学的概率;
(Ⅲ)在参加问卷调查的30名学生中,从来自甲、丙两所中学的学生中随机抽取2名,用X表示抽得甲中学的学生人数,求X的分布列.
| 中学 | 甲 | 乙 | 丙 | 丁 |
| 人数 | 30 | 40 | 20 | 10 |
(Ⅰ)问甲、乙、丙、丁四所中学各抽取多少名学生?
(Ⅱ)从参加问卷调查的30名学生中随机抽取2名,求这2名学生来自同一所中学的概率;
(Ⅲ)在参加问卷调查的30名学生中,从来自甲、丙两所中学的学生中随机抽取2名,用X表示抽得甲中学的学生人数,求X的分布列.