ÌâÄ¿ÄÚÈÝ

11£®ÒÑÖªµÈ²îÊýÁÐ{an}µÄ¹«²îd²»Îª0£¬ÇÒ${a_{k_1}}$£¬${a_{k_2}}$£¬¡­£¬${a_{k_n}}$£¬¡­£¨k1£¼k2£¼¡­£¼kn£¼¡­£©³ÉµÈ±ÈÊýÁУ¬¹«±ÈΪq£®
£¨1£©Èôk1=1£¬k2=3£¬k3=8£¬Çó$\frac{a_1}{d}$µÄÖµ£»
£¨2£©µ±$\frac{a_1}{d}$ΪºÎֵʱ£¬ÊýÁÐ{kn}ΪµÈ±ÈÊýÁУ»
£¨3£©ÈôÊýÁÐ{kn}ΪµÈ±ÈÊýÁУ¬ÇÒ¶ÔÓÚÈÎÒân¡ÊN*£¬²»µÈʽ${a_n}+{a_{k_n}}£¾2{k_n}$ºã³ÉÁ¢£¬Çóa1µÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÓÉÒÑÖªµÃ£ºa1£¬a3£¬a8³ÉµÈ±ÈÊýÁУ¬´Ó¶ø4d2=3a1d£¬ÓÉ´ËÄÜÇó³ö$\frac{a_1}{d}$µÄÖµ£®
£¨2£©ÉèÊýÁÐ{kn}ΪµÈ±ÈÊýÁУ¬Ôò${k_2}^2={k_1}{k_3}$£¬ÍƵ¼³ö$\frac{a_1}{d}=1$£¬´Ó¶ø${a_{k_n}}={k_n}d$£¬½ø¶ø${k_n}={k_1}{q^{n-1}}$£®Óɴ˵õ½µ±$\frac{a_1}{d}=1$ʱ£¬ÊýÁÐ{kn}ΪµÈ±ÈÊýÁУ®
£¨3£©ÓÉÊýÁÐ{kn}ΪµÈ±ÈÊýÁУ¬a1=d£¬${k_n}={k_1}{q^{n-1}}£¨q£¾1£©$£®µÃµ½${a_1}£¾\frac{{2{k_1}{q^{n-1}}}}{{n+{k_1}{q^{n-1}}}}$£¬$0£¼\frac{1}{a_1}£¼\frac{{n+{k_1}{q^{n-1}}}}{{2{k_1}{q^{n-1}}}}=\frac{1}{2}+\frac{q}{{2{k_1}}}\frac{n}{q^n}$ºã³ÉÁ¢£¬ÔÙÖ¤Ã÷¶ÔÓÚÈÎÒâµÄÕýʵÊý¦Å£¨0£¼¦Å£¼1£©£¬×Ü´æÔÚÕýÕûÊýn1£¬Ê¹µÃ$\frac{n_1}{{{q^{n_1}}}}£¼¦Å$£®
ÒªÖ¤$\frac{n_1}{{{q^{n_1}}}}£¼¦Å$£¬¼´Ö¤lnn1£¼n1lnq+ln¦Å£®ÓÉ´ËÄÜÇó³öa1µÄȡֵ·¶Î§£®

½â´ð ½â£º£¨1£©ÓÉÒÑÖª¿ÉµÃ£ºa1£¬a3£¬a8³ÉµÈ±ÈÊýÁУ¬
ËùÒÔ${£¨{a_1}+2d£©^2}={a_1}£¨{a_1}+7d£©$£¬¡­2·Ö
ÕûÀí¿ÉµÃ£º4d2=3a1d£®
ÒòΪd¡Ù0£¬ËùÒÔ$\frac{a_1}{d}=\frac{4}{3}$£® ¡­4·Ö
£¨2£©ÉèÊýÁÐ{kn}ΪµÈ±ÈÊýÁУ¬Ôò${k_2}^2={k_1}{k_3}$£®
ÓÖÒòΪ${a_{k_1}}$£¬${a_{k_2}}$£¬${a_{k_3}}$³ÉµÈ±ÈÊýÁУ¬
ËùÒÔ$[{{a_1}+£¨{k_1}-1£©d}][{{a_1}+£¨{k_3}-1£©d}]={[{{a_1}+£¨{k_2}-1£©d}]^2}$£®
ÕûÀí£¬µÃ${a_1}£¨2{k_2}-{k_1}-{k_3}£©=d£¨{k_1}{k_3}-{k_2}^2-{k_1}-{k_3}+2{k_2}£©$£®
ÒòΪ${k_2}^2={k_1}{k_3}$£¬ËùÒÔa1£¨2k2-k1-k3£©=d£¨2k2-k1-k3£©£®
ÒòΪ2k2¡Ùk1+k3£¬ËùÒÔa1=d£¬¼´$\frac{a_1}{d}=1$£®¡­6·Ö
µ±$\frac{a_1}{d}=1$ʱ£¬an=a1+£¨n-1£©d=nd£¬ËùÒÔ${a_{k_n}}={k_n}d$£®
ÓÖÒòΪ${a_{k_n}}={a_{k_1}}{q^{n-1}}={k_1}d{q^{n-1}}$£¬ËùÒÔ${k_n}={k_1}{q^{n-1}}$£®
ËùÒÔ$\frac{{{k_{n+1}}}}{k_n}=\frac{{{k_1}{q^n}}}{{{k_1}{q^{n-1}}}}=q$£¬ÊýÁÐ{kn}ΪµÈ±ÈÊýÁУ®
×ÛÉÏ£¬µ±$\frac{a_1}{d}=1$ʱ£¬ÊýÁÐ{kn}ΪµÈ±ÈÊýÁУ®¡­8·Ö
£¨3£©ÒòΪÊýÁÐ{kn}ΪµÈ±ÈÊýÁУ¬ÓÉ£¨2£©Öªa1=d£¬${k_n}={k_1}{q^{n-1}}£¨q£¾1£©$£®
${a_{k_n}}={a_{k_1}}{q^{n-1}}={k_1}d{q^{n-1}}={k_1}{a_1}{q^{n-1}}$£¬an=a1+£¨n-1£©d=na1£®
ÒòΪ¶ÔÓÚÈÎÒân¡ÊN*£¬²»µÈʽ${a_n}+{a_{k_n}}£¾2{k_n}$ºã³ÉÁ¢£®
ËùÒÔ²»µÈʽ$n{a_1}+{k_1}{a_1}{q^{n-1}}£¾2{k_1}{q^{n-1}}$£¬
¼´${a_1}£¾\frac{{2{k_1}{q^{n-1}}}}{{n+{k_1}{q^{n-1}}}}$£¬$0£¼\frac{1}{a_1}£¼\frac{{n+{k_1}{q^{n-1}}}}{{2{k_1}{q^{n-1}}}}=\frac{1}{2}+\frac{q}{{2{k_1}}}\frac{n}{q^n}$ºã³ÉÁ¢£®¡­10·Ö
ÏÂÃæÖ¤Ã÷£º¶ÔÓÚÈÎÒâµÄÕýʵÊý¦Å£¨0£¼¦Å£¼1£©£¬×Ü´æÔÚÕýÕûÊýn1£¬Ê¹µÃ$\frac{n_1}{{{q^{n_1}}}}£¼¦Å$£®
ÒªÖ¤$\frac{n_1}{{{q^{n_1}}}}£¼¦Å$£¬¼´Ö¤lnn1£¼n1lnq+ln¦Å£®
ÒòΪ$lnx¡Ü\frac{1}{e}x£¼\frac{1}{2}x$£¬Ôò$ln{n_1}=2ln{n_1}^{\frac{1}{2}}£¼{n_1}^{\frac{1}{2}}$£¬
½â²»µÈʽ${n_1}^{\frac{1}{2}}£¼{n_1}lnq+ln¦Å$£¬¼´${£¨{n_1}^{\frac{1}{2}}£©^2}lnq-{n_1}^{\frac{1}{2}}+ln¦Å£¾0$£¬
¿ÉµÃ${n_1}^{\frac{1}{2}}£¾\frac{{1+\sqrt{1-4lnqln¦Å}}}{2lnq}$£¬ËùÒÔ${n_1}£¾{£¨\frac{{1+\sqrt{1-4lnqln¦Å}}}{2lnq}£©^2}$£®
²»·ÁÈ¡${n_0}=[{{{£¨\frac{{1+\sqrt{1-4lnqln¦Å}}}{2lnq}£©}^2}}]+1$£¬Ôòµ±n1£¾n0ʱ£¬Ô­Ê½µÃÖ¤£®
ËùÒÔ$0£¼\frac{1}{a_1}¡Ü\frac{1}{2}$£¬ËùÒÔa1¡Ý2£¬¼´µÃa1µÄȡֵ·¶Î§ÊÇ[2£¬+¡Þ£©£® ¡­16·Ö

µãÆÀ ±¾Ì⿼²éµÈ²îÊýÁеÄÊ×ÏîÓ빫²îµÄ±ÈÖµµÄÇ󷨣¬¿¼²éÂú×ãµÈ±ÈÊýÁеĵȲîÊýÁеÄÊ×ÏîÓ빫²îµÄ±ÈÖµµÄÈ·¶¨£¬¿¼²éÊýÁеÄÊ×ÏîµÄȡֵ·¶Î§µÄÇ󷨣¬×ÛºÏÐÔÇ¿£¬ÄѶȴ󣬶ÔÊýѧ˼άҪÇó½Ï¸ß£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø