题目内容
20.(Ⅰ)求直方图中a的值;
(Ⅱ)已知该市有80万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.
分析 (Ⅰ)由频率分布直方图中小矩形的面积之和为1,能求出a.
(Ⅱ)由频率分布直方图求出100位居民每人月用水量不低于3吨的人数的频率,由此能估计全市80万居民中月均用水量不低于3吨的人数.
(Ⅲ)求出前6组的频率之和为0.88>0.85,前5组的频率之和为0.73<0.85,从而得到2.5≤x<3,由此能估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准.
解答 解:(Ⅰ)由频率分布直方图,
可得(0.08+0.16+a+0.40+0.52+a+0.12+0.08+0.04)×0.5=1,
解得a=0.30.
(Ⅱ)由频率分布直方图可知,
100位居民每人月用水量不低于3吨的人数为(0.12+0.08+0.04)×0.5=0.12,
由以上样本频率分布,
可以估计全市80万居民中月均用水量不低于3吨的人数为800000×0.12=96000.
(Ⅲ)∵前6组的频率之和为(0.08+0.16+0.30+0.40+0.52+0.30)×0.5=0.88>0.85,
而前5组的频率之和为(0.08+0.16+0.30+0.40+0.52)×0.5=0.73<0.85,∴2.5≤x<3
由0.3×(x-2.5)=0.85-0.73,解得x=2.9,
因此,估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准.
点评 本题考查频率分布直方图的应用,是基础题,解题时要认真审题,注意频率分布直方图的性质的合理运用.
练习册系列答案
相关题目
11.
我国古代数学典籍《九章算术》“盈不足”中有一道问题:“今有垣高九尺,瓜生其上,蔓日长七寸;瓠生其下,蔓日长一尺,问几何日相逢?”现用程序框图描述,如图所示,则输出的结果n=( )
| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
8.已知集合A={x|x2+x-6<0},B={x|3x>1},则A∩(∁RB)=( )
| A. | (-3,1] | B. | (1,2) | C. | (-3,0] | D. | [1,2) |
5.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左右焦点分别为F1,F2,直线l经过点F1及虚轴的一个端点,且点F2到直线l的距离等于实半轴的长,则双曲线的离心率为( )
| A. | $\frac{{1+\sqrt{5}}}{2}$ | B. | $\frac{{3+\sqrt{5}}}{4}$ | C. | $\sqrt{\frac{{1+\sqrt{5}}}{2}}$ | D. | $\frac{{\sqrt{3+\sqrt{5}}}}{2}$ |
9.设集合A={x|x2<2x},B={x|x-1<0},则A∩B=( )
| A. | (-∞,-1) | B. | (-∞,1) | C. | (0,1) | D. | (1,2) |
10.已知集合P={x∈R|0≤x≤3},Q={x∈R|x2≥4},则P∩(∁RQ)=( )
| A. | [0,3] | B. | (0,2] | C. | [0,2) | D. | (0,3] |