题目内容
16.已知集合A={1,2,3},B={x|x2-x-6=0},则A∩B=( )| A. | {1} | B. | {2} | C. | {3} | D. | {2,3} |
分析 求解一元二次方程化简B,再由交集运算得答案.
解答 解:∵A={1,2,3},
B={x|x2-x-6=0}={-2,3},
∴A∩B={1,2,3}∩{-2,3}={3}.
故选:C.
点评 本题考查交集及其运算,考查了一元二次方程的解法,是基础题.
练习册系列答案
相关题目
7.《九章算术》中“竹九节”问题:现有一根9节的竹子,自上而下各节的容积称等比数列,上面3节的容积共2升,下面3节的容积共128升,则第5节的容积为( )
| A. | 3升 | B. | $\frac{31}{6}$升 | C. | 4升 | D. | $\frac{32}{7}$ |
7.E为正四面体D-ABC棱AD的中点,平面α过点A,且α∥平面ECB,α∩平面ABC=m,α∩平面ACD=n,则m、n所成角的余弦值为( )
| A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{\sqrt{6}}{3}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{1}{3}$ |
1.直线l:4x-5y=20经过双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一个焦点和虚轴的一个端点,则C的离心率为( )
| A. | $\frac{5}{3}$ | B. | $\frac{3}{5}$ | C. | $\frac{5}{4}$ | D. | $\frac{4}{5}$ |
8.已知集合A={x|x2+x-6<0},B={x|3x>1},则A∩(∁RB)=( )
| A. | (-3,1] | B. | (1,2) | C. | (-3,0] | D. | [1,2) |
5.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左右焦点分别为F1,F2,直线l经过点F1及虚轴的一个端点,且点F2到直线l的距离等于实半轴的长,则双曲线的离心率为( )
| A. | $\frac{{1+\sqrt{5}}}{2}$ | B. | $\frac{{3+\sqrt{5}}}{4}$ | C. | $\sqrt{\frac{{1+\sqrt{5}}}{2}}$ | D. | $\frac{{\sqrt{3+\sqrt{5}}}}{2}$ |
6.《九章算术》是我国古代的优秀数学著作,在人类历史上第一次提出负数的概念,内容涉及方程、几何、数列、面积、体积的计算等多方面.书的第6卷19题,“今有竹九节,下三节容量四升,上四节容量三升.”如果竹由下往上均匀变细(各节容量可视为等差数列),则中间剩下的两节容量是多少升( )
| A. | $2\frac{23}{66}$ | B. | $2\frac{3}{22}$ | C. | $2\frac{61}{66}$ | D. | $1\frac{10}{11}$ |