题目内容

9.在△ABC中,∠A=60°,b=1,S△ABC=$\sqrt{3}$,则$\frac{a-2b+c}{sinA-2sinB+sinC}$的值等于(  )
A.$\frac{{2\sqrt{39}}}{3}$B.$\frac{26}{3}\sqrt{3}$C.$\frac{8}{3}\sqrt{3}$D.$2\sqrt{3}$

分析 先利用面积公式求得c的值,进而利用余弦定理可求a,再利用正弦定理求解比值.

解答 解:∵∠A=60°,b=1,S△ABC=$\sqrt{3}$=$\frac{1}{2}$bcsinA=$\frac{1}{2}×1×c×\frac{\sqrt{3}}{2}$,
∴c=4,
∴a2=b2+c2-2bccosA=1+14-2×$1×4×\frac{1}{2}$=13,
∴a=$\sqrt{13}$,
∴$\frac{a-2b+c}{sinA-2sinB+sinC}$=$\frac{a}{sinA}$=$\frac{\sqrt{13}}{\frac{\sqrt{3}}{2}}$=$\frac{2\sqrt{39}}{3}$.
故选:A.

点评 本题的考点是正弦定理,主要考查正弦定理的运用,关键是利用面积公式,求出边,再利用正弦定理求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网