题目内容

某足够大德长方体箱子放置一球O,已知球O与长方体一个顶点出发的三个平面都相切,且球面上一点M到三个平面的距离分别为3,2,1,求球的半径.
考点:球的体积和表面积
专题:计算题,空间位置关系与距离
分析:设(a,b,c) 为球心,半径为R球面方程(x-a)2+(x-b)2+(x-c)2=R2,由于球与三个平面相切,所以有:半径R=|a|=|b|=|c|另外,球面上某点M(3,2,1),当然在球面上,并且到三个平面的距离分别为3、2、1,所以:(3-R)2+(2-R)2+(1-R)2=R2,即可得出结论.
解答: 解:设(a,b,c) 为球心,半径为R球面方程(x-a)2+(x-b)2+(x-c)2=R2
由于球与三个平面相切,所以有:半径R=|a|=|b|=|c|
另外,球面上某点M(3,2,1),当然在球面上,并且到三个平面的距离分别为3、2、1,
所以:(3-R)2+(2-R)2+(1-R)2=R2
即 2R2-12R+14=0
R2-6R+9=(R-3)2=2
解得:R=3±
2
点评:本题考查平面与球相切,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网