ÌâÄ¿ÄÚÈÝ
¡°ºá¿´³ÉÁë²à³É·å£¬Ô¶½ü¸ßµÍ¸÷²»Í¬£®¡±Í¬Ò»ÊÂÎï´Ó²»Í¬½Ç¶È¿´£¬ÎÒÃÇ»áÓв»Í¬µÄÈÏʶ£®ÔÚÊýѧµÄ½âÌâÖУ¬ÌÈÈôÄÜÇ¡µ±µØ¸Ä±ä·ÖÎöÎÊÌâµÄ½Ç¶È£¬ÍùÍù»áÓС°É½ÇîË®¾¡ÒÉÎÞ·£¬Áø°µ»¨Ã÷ÓÖÒ»´å¡±µÄ»íÈ»¿ªÀÊÖ®¸Ð£®ÔĶÁÒÔÏÂÎÊÌâ¼°Æä½â´ð£º
ÎÊÌ⣺¶ÔÈÎÒâa¡Ê[-1£¬1]£¬²»µÈʽx2+ax-2¡Ü0ºã³ÉÁ¢£¬ÇóʵÊýxµÄȡֵ·¶Î§£®
½â£ºÁîf£¨a£©=xa+£¨x2-2£©£¬Ôò¶ÔÈÎÒâa¡Ê[-1£¬1]£¬²»µÈʽx2+ax-2¡Ü0ºã³ÉÁ¢Ö»ÐèÂú×ã
£¬ËùÒÔ-1¡Üx¡Ü1£®
Àà±ÈÆäÖÐËùÓõķ½·¨£¬¿É½âµÃ¹ØÓÚxµÄ·½³Ìx3-ax2-x-£¨a2+a£©=0£¨a£¼0£©µÄ¸ùΪ £®
ÎÊÌ⣺¶ÔÈÎÒâa¡Ê[-1£¬1]£¬²»µÈʽx2+ax-2¡Ü0ºã³ÉÁ¢£¬ÇóʵÊýxµÄȡֵ·¶Î§£®
½â£ºÁîf£¨a£©=xa+£¨x2-2£©£¬Ôò¶ÔÈÎÒâa¡Ê[-1£¬1]£¬²»µÈʽx2+ax-2¡Ü0ºã³ÉÁ¢Ö»ÐèÂú×ã
|
Àà±ÈÆäÖÐËùÓõķ½·¨£¬¿É½âµÃ¹ØÓÚxµÄ·½³Ìx3-ax2-x-£¨a2+a£©=0£¨a£¼0£©µÄ¸ùΪ
¿¼µã£ºÀà±ÈÍÆÀí
רÌâ£ºÍÆÀíºÍÖ¤Ã÷
·ÖÎö£ºÓÉÒÑÖªÀà±È¿ÉÒÔµÃf£¨a£©=a2+a£¨x2+1£©+x-x3=a2+a£¨x2+1£©+£¨1-x£©£¨x+x2£©=£¨a+x2+x£©£¨a-x+1£©Êǹؼü£®
½â´ð£º
½â£ºÁîf£¨a£©=a2+a£¨x2+1£©+x-x3=a2+a£¨x2+1£©+£¨1-x£©£¨x+x2£©=£¨a+x2+x£©£¨a-x+1£©£¬
ҪʹÕâ¸öµÈʽ³ÉÁ¢£¬ÄÇôa+x2+x=0»òa-x+1=0£¬
½âµÃ£ºx1=a+1£¬x2=
£¬x3=
£¬
¹Ê´ð°¸Îª£ºx1=a+1£¬x2=
£¬x3=
£®
ҪʹÕâ¸öµÈʽ³ÉÁ¢£¬ÄÇôa+x2+x=0»òa-x+1=0£¬
½âµÃ£ºx1=a+1£¬x2=
-1+
| ||
| 2 |
-1-
| ||
| 2 |
¹Ê´ð°¸Îª£ºx1=a+1£¬x2=
-1+
| ||
| 2 |
-1-
| ||
| 2 |
µãÆÀ£ºÀà±È˼ÏëÒ»¶¨Òª×ÐϸÔĶÁËù¸øÌâÄ¿µÄ½â·¨µÄʵÖÊ£¬È»ºóÍÆµ¼³öËùÒªÇóµÄÌâÄ¿µÄ˼Ïë·½·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÔÚ¡÷ABCÖУ¬Èô3cos2
+5sin2
=4£¬ÔòtanAtanB=£¨¡¡¡¡£©
| A-B |
| 2 |
| A+B |
| 2 |
| A¡¢4 | ||
B¡¢
| ||
| C¡¢-4 | ||
D¡¢-
|
×ø±êԵ㵽º¯Êýf£¨x£©=ex+1µÄͼÏóÔڵ㣨1£¬f£¨1£©£©´¦ÇÐÏßy=g£¨x£©µÄ¾àÀëΪ£¨¡¡¡¡£©
A¡¢
| ||||
B¡¢
| ||||
C¡¢
| ||||
D¡¢
|