题目内容
已知等差数列{an}的前n项和为Sn,已知a5=9,S10=100
(1)求数列{an}的通项公式;
(2)记数列{
}的前n项和为Tn,数列{
}的前n项和为Un,求证:Un<2.
(1)求数列{an}的通项公式;
(2)记数列{
| Sn |
| n |
| 1 |
| Sn+1-Tn+1 |
考点:数列的求和
专题:等差数列与等比数列
分析:(1)等差数列{an}的前n项和公式和通项公式由已知条件求出首项和公差,由此能求出an=2n-1.
(2)由(1)知Sn=n2.由此求出
=
=
=2(
-
),从而利用裂项求和法能证明Un<2.
(2)由(1)知Sn=n2.由此求出
| 1 |
| Sn+1-Tn+1 |
| 1 | ||
(n+1)2-
|
| 1 | ||
|
| 1 |
| n |
| 1 |
| n+1 |
解答:
(1)解:∵等差数列{an}的前n项和为Sn,已知a5=9,S10=100,
∴
,解得a1=1,d=2,
∴an=1+(n-1)×2=2n-1.
(2)证明:由(1)知Sn=n+
d=n2.
∴
=n,∴Tn=1+2+…+n=
,
∴
=
=
=2(
-
),
∴Un=2(1-
+
-
+…+
-
)
=2(1-
)
=2-
<2.
∴
|
∴an=1+(n-1)×2=2n-1.
(2)证明:由(1)知Sn=n+
| n(n-1) |
| 2 |
∴
| Sn |
| n |
| n(n+1) |
| 2 |
∴
| 1 |
| Sn+1-Tn+1 |
| 1 | ||
(n+1)2-
|
=
| 1 | ||
|
| 1 |
| n |
| 1 |
| n+1 |
∴Un=2(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=2(1-
| 1 |
| n+1 |
=2-
| 2 |
| n+1 |
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目