ÌâÄ¿ÄÚÈÝ
10£®2015Äêij¹¤³§Éú²úijÖÖ²úÆ·£¬Ã¿Èյijɱ¾C£¨µ¥Î»£ºÍòÔª£©ÓëÈÕ²úÁ¿x£¨µ¥Î»£º¶Ö£©Âú×㺯Êý¹ØÏµÊ½C=x+5£¬Ã¿ÈÕµÄÏúÊÛ¶îS£¨µ¥Î»£ºÍòÔª£©ÓëÈÕ²úÁ¿xµÄº¯Êý¹ØÏµÊ½£ºS=$\left\{\begin{array}{l}{3x+\frac{k}{x-8}+7£¬0£¼x£¼6}\\{16£¬x¡Ý6}\end{array}\right.$£¬ÒÑ֪ÿÈÕµÄÀûÈóL=S-C£¬ÇÒµ±x=2ʱ£¬L=3£®£¨1£©ÇókµÄÖµ£»
£¨2£©µ±ÈÕ²úÁ¿Îª¶àÉÙ¶Öʱ£¬Ã¿ÈÕµÄÀûÈó¿ÉÒÔ´ïµ½×î´ó£¬²¢Çó³ö×î´óÖµ£®
·ÖÎö £¨1£©ÀûÓÃÿÈÕµÄÀûÈóL=S-C£¬ÇÒµ±x=2ʱ£¬L=3£¬¿ÉÇókµÄÖµ£»
£¨2£©ÀûÓ÷ֶκ¯Êý£¬·Ö±ðÇó³öÏàÓ¦µÄ×îÖµ£¬¼´¿ÉµÃ³öº¯ÊýµÄ×î´óÖµ£®
½â´ð ½â£ºÓÉÌâÒ⣬ÿÈÕÀûÈóLÓëÈÕ²úÁ¿xµÄº¯Êý¹ØÏµÊ½Îªy=$\left\{\begin{array}{l}{2x+\frac{k}{x-8}+2£¬0£¼x£¼6}\\{11-x£¬x¡Ý6}\end{array}\right.$¡£¨4·Ö£©
£¨1£©µ±x=2ʱ£¬L=3£¬¼´£º3=2¡Á2+$\frac{k}{2-8}$+2¡£¨5·Ö£©
¡àk=18¡£¨6·Ö£©
£¨2£©µ±x¡Ý6ʱ£¬L=11-xΪµ¥µ÷µÝ¼õº¯Êý£¬
¹Êµ±x=6ʱ£¬Lmax=5 ¡£¨8·Ö£©
µ±0£¼x£¼6ʱ£¬L=2£¨x-8£©+$\frac{18}{x-8}$+18¡Ü6¡£¨11·Ö£©
µ±ÇÒ½öµ±2£¨x-8£©=$\frac{18}{x-8}$£¨0£¼x£¼6£©£¬
¼´x=5ʱ£¬Lmax=6¡£¨13·Ö£©
×ÛºÏÉÏÊöÇé¿ö£¬µ±ÈÕ²úÁ¿Îª5¶Öʱ£¬ÈÕÀûÈó´ïµ½×î´ó6ÍòÔª£®¡£¨14·Ö£©
µãÆÀ ±¾Ì⿼²éº¯Êý½âÎöʽµÄÈ·¶¨£¬¿¼²éº¯ÊýµÄ×îÖµ£¬È·¶¨º¯ÊýµÄ½âÎöʽÊǹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
5£®ÒÑÖªsin£¨$\frac{¦Ð}{2}$-¦È£©-cos£¨¦Ð+¦È£©=3sin£¨2¦Ð-¦È£©£¬Ôòsin¦Ècos¦È+cos2¦ÈµÈÓÚ£¨¡¡¡¡£©
| A£® | $\frac{3}{13}$ | B£® | $\frac{2}{5}$ | C£® | -$\frac{3}{5}$ | D£® | -$\frac{2}{5}$ |