题目内容

2.${C}_{n}^{o}$+${C}_{n+1}^{1}$+${C}_{n+2}^{2}$+…+${C}_{n+m-1}^{m-1}$=${C}_{n+m}^{m-1}$.

分析 利用组合数公式${C}_{n}^{m}$+${C}_{n}^{m-1}$=${C}_{n+1}^{m}$,进行化简即可.

解答 解:${C}_{n}^{o}$+${C}_{n+1}^{1}$+${C}_{n+2}^{2}$+…+${C}_{n+m-1}^{m-1}$=${C}_{n+1}^{0}$+${C}_{n+1}^{1}$+${C}_{n+2}^{2}$+…+${C}_{n+m-1}^{m-1}$
=${C}_{n+2}^{1}$+${C}_{n+2}^{2}$+…+${C}_{n+m-1}^{m-1}$
=${C}_{n+3}^{2}$+…+${C}_{n+m-1}^{m-1}$
=…=${C}_{n+m-1}^{m-2}$+${C}_{n+m-1}^{m-1}$
=${C}_{n+m}^{m-1}$.
故答案为:${C}_{n+m}^{m-1}$.

点评 本题考查了组合数公式的应用问题,也考查了逻辑思维与推理能力,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网