题目内容

11.计算:
(1)${({\frac{16}{81}})^{-\frac{3}{4}}}+{log_3}\frac{5}{4}+{log_3}\frac{4}{5}$
(2)log2.56.25+lg0.001+ln$\sqrt{e}+{2^{-1+{{log}_2}3}}$.

分析 根据对数运算公式loga(MN)=logaM+logaN以及指数、对数的运算性质计算即可.

解答 解:(1)原式=${(\frac{2}{3})}^{4×(-\frac{3}{4})}$+log3($\frac{5}{4}$×$\frac{4}{5}$)=${(\frac{2}{3})}^{-3}$+0=$\frac{27}{8}$;
  (2)原式=log2.52.52+lg10-3+ln${e}^{\frac{1}{2}}$+$\frac{3}{2}$=2-3+$\frac{1}{2}$+$\frac{3}{2}$=1.

点评 本题考查了指数、对数的运算性质,熟记公式是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网