题目内容

如图,正三角形ABC的边长为2,D、E、F分别在三边AB,BC和CA上,且D为AB的中点,∠EDF=90°,∠BDE=θ(0°<θ<90°).
(1)当tan∠DEF=
3
2
时,求θ的大小;
(2)求△DEF的面积S的最小值及使得S取最小值时θ的值.
考点:余弦定理,正弦定理
专题:三角函数的求值
分析:(1)在△BDE中,BD=1,B=60°,∠BED=120°-θ,利用正弦定理表示出DE,在△ADF中,利用正弦定理表示出DF,根据tan∠DEF的值,列表关系式,整理求出tanθ的值,即可确定出θ的大小;
(2)根据两直角边乘积的一半表示出三角形DEF面积S,利用两角和与差的正弦函数公式化简,整理后利用同角三角间基本关系变形,由正弦函数的值域即可确定出S的最小值以及使得S取最小值时θ的值.
解答: 解:(1)在△BDE中,由正弦定理
DE
sin60°
=
BD
sin(120°-θ)
得:DE=
BDsin60°
sin(120°-θ)
=
3
2sin(60°+θ)

在△ADF中,由正弦定理
DF
sin60°
=
AD
sin(30°+θ)
得:DF=
ADsin60°
sin(30°+θ)
=
3
2sin(30°+θ)

∵tan∠DEF=
3
2

sin(60°+θ)
sin(30°+θ)
=
3
2
,整理得:tanθ=
3

则θ=60°;
(2)S=
1
2
DE•DF=
3
8sin(60°+θ)sin(30°+θ)
=
3
2(
3
cosθ+sinθ)(cosθ+
3
sinθ)
=
3
2[
3
(cos2θ+sin2θ)+4sinθcosθ]
=
3
2(
3
+2sin2θ)

当θ=45°时,S取最小值
3
2(
3
+2)
=
6-3
3
2
点评:此题考查了正弦、余弦定理,三角形的面积公式,以及同角三角函数间的基本关系,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网