题目内容
设函数f(x)对于任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时f(x)<0,f(1)=-1.
(1)判断f(x)的单调性,并用定义法证明;
(2)求f(x)在[0,3]上的值域.
(1)判断f(x)的单调性,并用定义法证明;
(2)求f(x)在[0,3]上的值域.
考点:抽象函数及其应用,函数的值域,函数单调性的判断与证明
专题:计算题,函数的性质及应用
分析:(1)令x=0,由f(0+y)=f(0)+f(y)得f(0)=0,可得f(x)+f(-x)=f(x-x)=f(0)=0,得f(x)为奇函数.令x>y,由已知可得f(x)-f(y)=f(x)+f(-y)=f(x-y),结合x>0时f(x)<0,结合函数单调性的定义可得结论.
(2)运用(1)的结论和条件f(x+y)=f(x)+f(y),f(1)=-1,求出f(3)即可.
(2)运用(1)的结论和条件f(x+y)=f(x)+f(y),f(1)=-1,求出f(3)即可.
解答:
解:(1)f(x)在R上是减函数.
∵f(x+y)=f(x)+f(y),
令x=0,则f(0+y)=f(0)+f(y)
∴f(0)=0,
∴f(x)+f(-x)=f(x-x)=f(0)=0
∴f(x)为R上的奇函数,
令x2>x1则f(x2)-f(x1)=f(x2)+f(-x1)=f(x2-x1),
∵x2>x1,∴x2-x1>0,f(x2-x1)=f(x2)-f(x1)<0
∴f(x)为R上的单调减函数;
(2)∵f(x+y)=f(x)+f(y),f(1)=-1,
∴f(2)=2f(1)=-2,f(3)=f(2)+f(1)=-3,
∵f(x)在R上是减函数,
∴f(x)在[0,3]上的值域是[f(3),f(0)],即[-3,0].
∵f(x+y)=f(x)+f(y),
令x=0,则f(0+y)=f(0)+f(y)
∴f(0)=0,
∴f(x)+f(-x)=f(x-x)=f(0)=0
∴f(x)为R上的奇函数,
令x2>x1则f(x2)-f(x1)=f(x2)+f(-x1)=f(x2-x1),
∵x2>x1,∴x2-x1>0,f(x2-x1)=f(x2)-f(x1)<0
∴f(x)为R上的单调减函数;
(2)∵f(x+y)=f(x)+f(y),f(1)=-1,
∴f(2)=2f(1)=-2,f(3)=f(2)+f(1)=-3,
∵f(x)在R上是减函数,
∴f(x)在[0,3]上的值域是[f(3),f(0)],即[-3,0].
点评:本题以抽象函数为载体考查了函数求值,函数的奇偶性,函数的单调性和函数的最值,熟练掌握函数奇偶性和单调性的定义是解答的关键.
练习册系列答案
相关题目