题目内容
7.已知如下等式:2+4=6;8+10+12=14+16;18+20+22+24=26+28+30;…,以此类推,则2040会出现在第31个等式中.分析 从已知等式分析,发现规律为:各等式首项分别为2×1,2(1+3),2(1+3+5),…,即可得出结论.
解答 解:①2+4=6;
②8+10+12=14+16;
③18+20+22+24=26+28+30,…
其规律为:各等式首项分别为2×1,2(1+3),2(1+3+5),…,
所以第n个等式的首项为2[1+3+…+(2n-1)]=2×$\frac{n(1+2n-1)}{2}$=2n2,
当n=31时,等式的首项为2×312=1922,
当n=32时,等式的首项为2×322=2048,
所以2040在第31个等式中,
故答案为:31
点评 本题考查归纳推理,难点是根据能够找出数之间的内在规律,考查观察、分析、归纳的能力,是基础题.
练习册系列答案
相关题目
17.△ABC的内角,角A,B,C的对边分别为a,b,c,已知,a=$\sqrt{5},cosA=\frac{2}{3}$,c=2则b=( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 3 |
15.已知函数f(x)=loga(x+4)-1(a>0且a≠1)的图象恒过定点A,若直线$\frac{x}{m}+\frac{y}{n}=-2$(m,n>0)也经过点A,则3m+n的最小值为( )
| A. | 16 | B. | 8 | C. | 12 | D. | 14 |
12.某研究机构在对具有线性相关的两个变量x和y进行统计分析时,得到数据如下:
由表中的数据求得y关于x的线性回归方程为$\widehaty$=-0.7x+a,则a等于( )
| x | 1 | 2 | 3 | 4 |
| y | 4.5 | 4 | 3 | 2.5 |
| A. | 10.5 | B. | 5.25 | C. | 5.2 | D. | 5.15 |
19.某班5名学生的数学和物理成绩如下表:
(1)求物理成绩y对数学成绩x的回归直线方程;
(2)一名学生的数学成绩是96,试预测他的物理成绩.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
| A | B | C | D | E | |
| 数学成绩(x) | 88 | 76 | 73 | 66 | 63 |
| 物理成绩(y) | 78 | 65 | 71 | 64 | 61 |
(2)一名学生的数学成绩是96,试预测他的物理成绩.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
16.现有编号为A,B,C,D的四本书,将这4本书平均分给甲、乙两位同学,则A,B两本书不被同一位同学分到的概率为( )
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{2}$ |
17.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{12}=1({a>0})$,以原点为圆心,双曲线的实轴长为半径长的圆与双曲线的两条渐近线相交于A,B,C,D四点,四边形的ABCD的面积为$2\sqrt{3}a$,则a的值为( )
| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$或$2\sqrt{2}$ | D. | 2 |