题目内容
8.设m>0,双曲线M:$\frac{{x}^{2}}{m}$-y2=1与圆N:x2+(y-m)2=1相切,A(-$\sqrt{m+1}$,0),B($\sqrt{m+1}$,0),若圆N上存在一点P满足|PA|-|PB|=2$\sqrt{m}$.则点P到x轴的距离为( )| A. | m3 | B. | m2 | C. | m | D. | $\frac{m}{1+m}$ |
分析 求得双曲线的a,b,c,焦点坐标,运用双曲线的定义可得P在双曲线上,且P为双曲线与圆相切的切点,设切点P(s,t),对双曲线的方程两边对x求导,可得切线的斜率,再由圆的切线的性质,可得s,t的方程,解方程可得t,即点P到x轴的距离.
解答 解:双曲线M:$\frac{{x}^{2}}{m}$-y2=1的a=$\sqrt{m}$,b=1,c=$\sqrt{m+1}$,
由A(-$\sqrt{m+1}$,0),B($\sqrt{m+1}$,0),
圆N上存在一点P满足|PA|-|PB|=2$\sqrt{m}$,
可得A,B为双曲线的焦点,
由双曲线的定义可得P在双曲线上,
且P为双曲线与圆相切的切点,
设切点P(s,t),由双曲线M:$\frac{{x}^{2}}{m}$-y2=1对x求导,可得:
$\frac{2x}{m}$-2yy′=0,可得切线的斜率为$\frac{s}{mt}$,
由切线与圆心和切点的连线垂直,可得:
$\frac{s}{mt}$•$\frac{m-t}{-s}$=-1,解得t=$\frac{m}{1+m}$.
即有点P到x轴的距离为$\frac{m}{1+m}$.
故选:D.
点评 本题考查双曲线的定义、方程和性质,考查圆的切线的斜率求法,以及双曲线的切线的斜率求法,考查运算能力,属于中档题.
练习册系列答案
相关题目
18.已知i为虚数单位,则i4=( )
| A. | 1 | B. | -1 | C. | i | D. | -i |
3.已知双曲线C:$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{m}$=1,(m>0)的离心率与一条斜率为正数的渐近线的斜率之和为$\frac{\sqrt{34}+3}{5}$,则m=( )
| A. | 9 | B. | 16 | C. | 9或16 | D. | 4或15 |
20.在平面直角坐标系中,若不等式组$\left\{\begin{array}{l}x+2y≥2\\ 1≤x≤2\\ ax-y+1≥0\end{array}\right.$(a为常数)表示的区域面积等于1,则a的值为( )
| A. | $-\frac{1}{6}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{2}$ | D. | 1 |
17.已知函数f(x)=2x+1+$\frac{a}{2^x}$,给出如下二个命题:
p1:?a∈R,使得函数y=f(x)是偶函数;
p2:若a=-3,则y=f(x)在$({\frac{1}{2},+∞})$上有零点.
则下列命题正确的是( )
p1:?a∈R,使得函数y=f(x)是偶函数;
p2:若a=-3,则y=f(x)在$({\frac{1}{2},+∞})$上有零点.
则下列命题正确的是( )
| A. | ¬p1 | B. | ¬p1∨p2 | C. | p1∧p2 | D. | p1∧(¬p2) |