题目内容

17.已知函数f(x)=2x+1+$\frac{a}{2^x}$,给出如下二个命题:
p1:?a∈R,使得函数y=f(x)是偶函数;
p2:若a=-3,则y=f(x)在$({\frac{1}{2},+∞})$上有零点.
则下列命题正确的是(  )
A.¬p1B.¬p1∨p2C.p1∧p2D.p1∧(¬p2

分析 利用函数的性质先判定命题p1,p2的真假,再利用复合命题真假的判定方法即可得出.

解答 解:对于命题p1:假设函数f(x)是偶函数,则f(-x)=f(x),∴2-x+1+$\frac{a}{{2}^{-x}}$=2x+1+$\frac{a}{2^x}$,化为:a$({2}^{x}-\frac{1}{{2}^{x}})$=2$({2}^{x}-\frac{1}{{2}^{x}})$,解得a=2.因此:?a=2,使得函数y=f(x)是偶函数,因此是真命题.
对于命题p2:函数f(x)=2x+1-$\frac{3}{{2}^{x}}$,令f(x)=0,可得:$({2}^{x})^{2}=\frac{3}{2}$,可得2x=$\sqrt{\frac{3}{2}}$,∴x=$lo{g}_{2}\sqrt{\frac{3}{2}}$<$lo{g}_{2}\sqrt{2}$=$\frac{1}{2}$.因此a=-3,则y=f(x)在$({\frac{1}{2},+∞})$上没有零点,是假命题.
∴p1∧(¬p2)是真命题.
故选:D.

点评 本题考查了复合命题真假的判定方法、函数的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网