题目内容

20.《算法统宗》是中国古代数学名著,由明代数学家程大位编著.《算法统宗》对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,“竹筒容米”就是其中一首:家有九節竹一莖,為因盛米不均平;下頭三節三升九,上梢四節貯三升;唯有中間二節竹,要將米數次第盛;若是先生能算法,也教算得到天明!大意是:用一根9节长的竹子盛米,每节竹筒盛米的容积是不均匀的.下端3节可盛米3.9升,上端4节可盛米3升.要按依次盛米容积相差同一数量的方式盛米,中间两节可盛米多少升?由以上条件,计算出中间两节的容积为(  )
A.2.1升B.2.2升C.2.3升D.2.4升

分析 要按依次盛米容积相差同一数量的方式盛米,设相差的同一数量为d升,下端第一节盛米a1升,由等差数列通项公式及前n项和公式列出方程组求出a1,d,由此能求出中间两节可盛米的容积.

解答 解:要按依次盛米容积相差同一数量的方式盛米,设相差的同一数量为d升,下端第一节盛米a1升,
由题意得$\left\{\begin{array}{l}{{S}_{3}=3{a}_{1}+\frac{3×2}{2}d=3.9}\\{{S}_{9}-{S}_{5}=(9{a}_{1}+\frac{9×8}{2}d)-(5{a}_{1}+\frac{5×4}{2}d)=3}\end{array}\right.$,
解得a1=1.4,d=-0.1,
∴中间两节可盛米的容积为:
a4+a5=(a1+3d)+(a1+4d)=2a1+7d=2.8-0.7=2.1(升).
故选:A.

点评 本题考查等差数列在生产生活中的实际应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网