题目内容

已知数列{an}的前n项和Sn,满足:Sn=2an-2n(n∈N*
(1)求证:{an+2}是等比数列
(2)求数列{an}的通项an
(3)若数列{bn}的满足bn=log2(an+2),Tn为数列{
bn
an+2
}的前n项和,求证
1
2
≤Tn
3
2
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由已知条件推导出an=2an-2an-1-2,所以an+2=2(an-1+2),由此能证明{an+2}是以a1+2=4为首项,2为公比的等比数列.
(2){an+2}是以a1+2=4为首项,2为公比的等比数列,由此能求出数列{an}的通项an
(3)由
bn
an+2
=
n+1
2n+1
,由此利用错位相减法能求出Tn=
3
2
-
n+3
2n+1
.由此能证明
1
2
≤Tn
3
2
解答: (1)证明:当n∈N*时,Sn=2an-2n,
则当n≥2时,Sn-1=2an-1-2(n-1)
两式相减得an=2an-2an-1-2,
即an=2an-1+2,
∴an+2=2(an-1+2),
an+2
an-1+2
=2

当n=1时,S1=2a1-2,则a1=2,
∴{an+2}是以a1+2=4为首项,2为公比的等比数列.
(2)解:∵{an+2}是以a1+2=4为首项,2为公比的等比数列,
an+2=4×2n-1
an=2n+1-2
(3)证明:bn=log2(an+2)=log22n+1=n+1
bn
an+2
=
n+1
2n+1

Tn=
2
22
+
3
23
+…+
n+1
2n+1
,①
1
2
Tn=
2
23
+
3
24
+…+
n
2n+1
+
n+1
2n+2
,②
①-②,得:
1
2
Tn
=
2
22
+
1
23
+
1
24
+…+
1
2n+1
-
n+1
2n+2

=
1
2
+
1
8
(1-
1
2n-1
)
1-
1
2
-
n+1
2n+2

=
1
2
+
1
4
-
1
2n+1
-
n+1
2n+2

=
3
4
-
n+3
2n+2

Tn=
3
2
-
n+3
2n+1

当n≥2时,Tn-Tn-1=-
n+1
2n+1
+
n+2
2n
=
n+1
2n+1
>0,
∴{Tn}为递增数列,∴Tn≥T1=
1
2

又∵
n+2
2n+1
>0
,∴Tn=
3
2
-
n+3
2n+1
3
2

1
2
≤Tn
3
2
点评:本题考查等比数列的证明,考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网