题目内容
已知数列{an}的前n项和Sn,满足:Sn=2an-2n(n∈N*)
(1)求证:{an+2}是等比数列
(2)求数列{an}的通项an
(3)若数列{bn}的满足bn=log2(an+2),Tn为数列{
}的前n项和,求证
≤Tn≤
.
(1)求证:{an+2}是等比数列
(2)求数列{an}的通项an
(3)若数列{bn}的满足bn=log2(an+2),Tn为数列{
| bn |
| an+2 |
| 1 |
| 2 |
| 3 |
| 2 |
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由已知条件推导出an=2an-2an-1-2,所以an+2=2(an-1+2),由此能证明{an+2}是以a1+2=4为首项,2为公比的等比数列.
(2){an+2}是以a1+2=4为首项,2为公比的等比数列,由此能求出数列{an}的通项an.
(3)由
=
,由此利用错位相减法能求出Tn=
-
.由此能证明
≤Tn<
.
(2){an+2}是以a1+2=4为首项,2为公比的等比数列,由此能求出数列{an}的通项an.
(3)由
| bn |
| an+2 |
| n+1 |
| 2n+1 |
| 3 |
| 2 |
| n+3 |
| 2n+1 |
| 1 |
| 2 |
| 3 |
| 2 |
解答:
(1)证明:当n∈N*时,Sn=2an-2n,
则当n≥2时,Sn-1=2an-1-2(n-1)
两式相减得an=2an-2an-1-2,
即an=2an-1+2,
∴an+2=2(an-1+2),
∴
=2,
当n=1时,S1=2a1-2,则a1=2,
∴{an+2}是以a1+2=4为首项,2为公比的等比数列.
(2)解:∵{an+2}是以a1+2=4为首项,2为公比的等比数列,
∴an+2=4×2n-1,
∴an=2n+1-2.
(3)证明:bn=log2(an+2)=log22n+1=n+1,
∴
=
,
则Tn=
+
+…+
,①
Tn=
+
+…+
+
,②
①-②,得:
Tn=
+
+
+…+
-
=
+
-
=
+
-
-
=
-
,
∴Tn=
-
.
当n≥2时,Tn-Tn-1=-
+
=
>0,
∴{Tn}为递增数列,∴Tn≥T1=
,
又∵
>0,∴Tn=
-
<
.
∴
≤Tn<
.
则当n≥2时,Sn-1=2an-1-2(n-1)
两式相减得an=2an-2an-1-2,
即an=2an-1+2,
∴an+2=2(an-1+2),
∴
| an+2 |
| an-1+2 |
当n=1时,S1=2a1-2,则a1=2,
∴{an+2}是以a1+2=4为首项,2为公比的等比数列.
(2)解:∵{an+2}是以a1+2=4为首项,2为公比的等比数列,
∴an+2=4×2n-1,
∴an=2n+1-2.
(3)证明:bn=log2(an+2)=log22n+1=n+1,
∴
| bn |
| an+2 |
| n+1 |
| 2n+1 |
则Tn=
| 2 |
| 22 |
| 3 |
| 23 |
| n+1 |
| 2n+1 |
| 1 |
| 2 |
| 2 |
| 23 |
| 3 |
| 24 |
| n |
| 2n+1 |
| n+1 |
| 2n+2 |
①-②,得:
| 1 |
| 2 |
| 2 |
| 22 |
| 1 |
| 23 |
| 1 |
| 24 |
| 1 |
| 2n+1 |
| n+1 |
| 2n+2 |
=
| 1 |
| 2 |
| ||||
1-
|
| n+1 |
| 2n+2 |
=
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2n+1 |
| n+1 |
| 2n+2 |
=
| 3 |
| 4 |
| n+3 |
| 2n+2 |
∴Tn=
| 3 |
| 2 |
| n+3 |
| 2n+1 |
当n≥2时,Tn-Tn-1=-
| n+1 |
| 2n+1 |
| n+2 |
| 2n |
| n+1 |
| 2n+1 |
∴{Tn}为递增数列,∴Tn≥T1=
| 1 |
| 2 |
又∵
| n+2 |
| 2n+1 |
| 3 |
| 2 |
| n+3 |
| 2n+1 |
| 3 |
| 2 |
∴
| 1 |
| 2 |
| 3 |
| 2 |
点评:本题考查等比数列的证明,考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目