题目内容
18.若集合A={-2,0,1},B={x|x<-1或x>0},则A∩B=( )| A. | {-2} | B. | {1} | C. | {-2,1} | D. | {-2,0,1} |
分析 利用交集定义直接求解.
解答 解:∵集合A={-2,0,1},B={x|x<-1或x>0},
∴A∩B={-2,1}.
故选:C.
点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.
练习册系列答案
相关题目
6.已知{an}为无穷等比数列,且公比q>1,记Sn为{an}的前n项和,则下面结论正确的是( )
| A. | a3>a2 | B. | a1+a2>0 | C. | $\{{a_n}^2\}$是递增数列 | D. | Sn存在最小值 |
3.函数y=f(x)的图象如图所示,则f(x)的解析式可以为( )

| A. | $f(x)=\frac{1}{x}-{x^2}$ | B. | $f(x)=\frac{1}{x}-{x^3}$ | C. | $f(x)=\frac{1}{x}-{e^x}$ | D. | $f(x)=\frac{1}{x}-lnx$ |
7.已知△ABC的顶点B,C在椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上,椭圆的一个焦点为A,另一个焦点在边BC上,若△ABC是边长为2的正三角形,则b=( )
| A. | $\frac{\sqrt{6}}{2}$ | B. | $\frac{\sqrt{6}}{3}$ | C. | $\frac{\sqrt{6}}{4}$ | D. | $\frac{\sqrt{6}}{6}$ |