题目内容
已知{an}是各项为不同的正数的等差数列,lga1、lga2、lga4成等差数列,又bn=
,n=1、2、3…
(1)证明:{bn}为等比数列;
(2)如果数列{bn}前3项的和为
,求数列{an}的首项和公差;
(3)在(2)小题的前提下,令Sn为数列{6anbn}的前n项和,求Sn.
| 1 |
| a2n |
(1)证明:{bn}为等比数列;
(2)如果数列{bn}前3项的和为
| 7 |
| 24 |
(3)在(2)小题的前提下,令Sn为数列{6anbn}的前n项和,求Sn.
考点:数列的求和
专题:综合题,等差数列与等比数列
分析:(1)依题意,可求得a22=a1•a4,设各项为不同的正数的等差数列{an}的公差为d,易求a1=d,于是得bn=
,利用等比数列的定义即可判定{bn}为等比数列;
(2)依题意,易求b1=
,又b1=
,于是d=a1=3;
(3)由(2)知an•bn=n•(
)n,令Tn=1×
+2×(
)2+…+n•(
)n,利用错位相减法可求得Tn,继而得Sn=6Tn.
| 1 |
| 2nd |
(2)依题意,易求b1=
| 1 |
| 6 |
| 1 |
| 2d |
(3)由(2)知an•bn=n•(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
解答:
(1)证明:∵lga1、lga2、lga4成等差数列,
∴2lga2=lga1+lga4成=lg(a1•a4),
∴a22=a1•a4,
又{an}是各项为不同的正数的等差数列,设其公差为d,
则(a1+d)2=a1•(a1+3d),
∴a1d=d2,又d≠0,
∴a1=d,
∴an=nd,a2n=2nd,
=
,
又bn=
=
,
∴
=
,
∴{bn}为公比是
的等比数列;
(2)∵b1+
b1+
b1=
b1=
,
∴b1=
,又b1=
,
解得:d=3,又a1=d,故a1=3;
∴an=3n;
(3)∵an=3n,bn=b1q=
•(
)n-1=
•(
)n,
∴an•bn=n•(
)n,
∴Sn=6(a1b1+a2b2+…+anbn)
=6[1×
+2×(
)2+…+n•(
)n],
令Tn=1×
+2×(
)2+…+n•(
)n,
则
Tn=1×(
)2+2×(
)3+…+(n-1)•(
)n+n•(
)n+1,
两式相减:
Tn=
+(
)2+(
)3+…+(
)n-n•(
)n+1
=1-(
)n-n•(
)n+1
=1-
×(
)n,
∴Tn=2-(n+2)•(
)n,
∴Sn=12-(6n+12)•(
)n.
∴2lga2=lga1+lga4成=lg(a1•a4),
∴a22=a1•a4,
又{an}是各项为不同的正数的等差数列,设其公差为d,
则(a1+d)2=a1•(a1+3d),
∴a1d=d2,又d≠0,
∴a1=d,
∴an=nd,a2n=2nd,
| 1 |
| a2n |
| 1 |
| 2nd |
又bn=
| 1 |
| a2n |
| 1 |
| 2nd |
∴
| bn+1 |
| bn |
| 1 |
| 2 |
∴{bn}为公比是
| 1 |
| 2 |
(2)∵b1+
| 1 |
| 2 |
| 1 |
| 4 |
| 7 |
| 4 |
| 7 |
| 24 |
∴b1=
| 1 |
| 6 |
| 1 |
| 2d |
解得:d=3,又a1=d,故a1=3;
∴an=3n;
(3)∵an=3n,bn=b1q=
| 1 |
| 6 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
∴an•bn=n•(
| 1 |
| 2 |
∴Sn=6(a1b1+a2b2+…+anbn)
=6[1×
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
令Tn=1×
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
则
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
两式相减:
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=1-(
| 1 |
| 2 |
| 1 |
| 2 |
=1-
| n+2 |
| 2 |
| 1 |
| 2 |
∴Tn=2-(n+2)•(
| 1 |
| 2 |
∴Sn=12-(6n+12)•(
| 1 |
| 2 |
点评:本题考查数列的求和,着重考查等比数列的确定与通项公式的应用,突出考查错位相减法的应用,考查综合运算与求解能力,属于难题.
练习册系列答案
相关题目
下列三数
,log1682,log27124的大小关系是( )
| 3 |
| 2 |
A、
| ||
B、
| ||
C、log27124<
| ||
D、log27124<log1682<
|