题目内容

已知定直线l:x=-1,定点F(1,0),⊙P经过F且与l相切.
(1)求P点的轨迹C的方程.
(2)是否存在定点M,使经过该点的直线与曲线C交于A、B两点,并且以AB为直径的圆都经过原点;若有,请求出M点的坐标;若没有,请说明理由.
考点:直线与圆锥曲线的综合问题
专题:直线与圆
分析:(1)由已知得点P的轨迹C是以F为焦点,l为准线的抛物线,由此能求出点P的轨迹C的方程.
(2)设AB的方程为x=my+n,代入抛物线方程整理,得:y2-4my-4n=0,由此利用韦达定理、直径性质能求出直线AB:x=my+4恒过M(4,0)点.
解答: 解:(1)由题设知点P到点F的距离与点P到直线l的距离相等,
∴点P的轨迹C是以F为焦点,l为准线的抛物线,
∴点P的轨迹C的方程为y2=4x.
(2)设AB的方程为x=my+n,
代入抛物线方程整理,得:
y2-4my-4n=0,
设A(x1,y1),B(x2,y2),则
y1+y2=4m
y1y2=-4n

∵以AB为直径的圆过原点,∴OA⊥OB,
∴y1y2+x1x2=0,∴y1y2+
y12
4
y22
4
=0

∴y1y2=-16,
∴-4n=-16,解得n=4,
∴直线AB:x=my+4恒过M(4,0)点.
点评:本题考查点的轨迹方程的求法,考查满足条件的点的坐标是否存在的判断与求法,解题时要认真审题,注意函数与方程思想的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网