题目内容
6.设f(x)=$\left\{\begin{array}{l}{2-{3}^{x-1},x<2}\\{lo{g}_{5}(3x-4),x≥2}\end{array}\right.$,则f(f(3))的值为1.分析 先求出∴f(3)=log5(3×3-4)=log55=1,从而f(f(3))=f(1),由此能求出结果.
解答 解:∵f(x)=$\left\{\begin{array}{l}{2-{3}^{x-1},x<2}\\{lo{g}_{5}(3x-4),x≥2}\end{array}\right.$,
∴f(3)=log5(3×3-4)=log55=1,
f(f(3))=f(1)=2-30=1.
故答案为:1.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关题目
16.
随着人们经济收入的不断增长,个人购买家庭轿车已不再是一种时尚.车的使用费用,尤其是随着使用年限的增多,所支出的费用到底会增长多少,一直是购车一族非常关心的问题.某汽车销售公司作了一次抽样调查,并统计得出某款车的使用年限x与所支出的总费用y(万元)有如表的数据资料:
(1)在给出的坐标系中做出散点图;
(2)求线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中的$\widehat{a}$、$\widehat{b}$;
(3)估计使用年限为12年时,车的使用总费用是多少?
(最小二乘法求线性回归方程系数公式$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$).
| 使用年限x | 2 | 3 | 4 | 5 | 6 |
| 总费用y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(2)求线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中的$\widehat{a}$、$\widehat{b}$;
(3)估计使用年限为12年时,车的使用总费用是多少?
(最小二乘法求线性回归方程系数公式$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$).