题目内容

16.随着人们经济收入的不断增长,个人购买家庭轿车已不再是一种时尚.车的使用费用,尤其是随着使用年限的增多,所支出的费用到底会增长多少,一直是购车一族非常关心的问题.某汽车销售公司作了一次抽样调查,并统计得出某款车的使用年限x与所支出的总费用y(万元)有如表的数据资料:
使用年限x23456
总费用y2.23.85.56.57.0
(1)在给出的坐标系中做出散点图;
(2)求线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中的$\widehat{a}$、$\widehat{b}$;
(3)估计使用年限为12年时,车的使用总费用是多少?
(最小二乘法求线性回归方程系数公式$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$).

分析 (1)利用描点法作出散点图;
(2)把数据代入公式,利用最小二乘法求回归方程的系数,可得回归直线方程;
(3)把x=12代入回归方程得y值,即为预报变量.

解答 解:(1)散点图如图,由图知y与x间有线性相关关系.

(2)∵$\overline{x}$=4,$\overline{y}$=5,$\sum_{i=1}^{5}$ xiyi=112.3,$\sum_{i=1}^{5}$${{x}_{i}}^{2}$=90,
∴$\widehat{b}$=$\frac{112.3-5×4×5}{90-5×42}$=$\frac{12.3}{10}$=1.23;
$\widehat{a}$=$\widehat{y}$-$\widehat{b}$x=5-1.23×4=0.08.
(3)线性回归直线方程是$\widehat{y}$=1.23x+0.08,
当x=12(年)时,$\widehat{y}$=1.23×12+0.08=14.84(万元).
即估计使用12年时,支出总费用是14.84万元.

点评 本题考查了线性回归直线方程的求法及利用回归方程估计预报变量,解答此类问题的关键是利用公式求回归方程的系数,计算要细心.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网