题目内容
已知cos(α-
)=
,α为锐角,则cosα= .
| π |
| 3 |
| 15 |
| 17 |
考点:两角和与差的余弦函数
专题:三角函数的求值
分析:α为锐角,则有-
<α-
<
,故sin(α-
)=±
,从而由cosα=cos[(α-
)+
]求出cosα的值.
| π |
| 3 |
| π |
| 3 |
| π |
| 6 |
| π |
| 3 |
| 8 |
| 17 |
| π |
| 3 |
| π |
| 3 |
解答:
解:cos(α-
)=
,α为锐角,
-
<α-
<
,故sin(α-
)=±
=±
,
∴cosα=cos[(α-
)+
]=cos(α-
)cos
-sin(α-
)sin
=
×
-(±
)×
=
故答案为:
.
| π |
| 3 |
| 15 |
| 17 |
-
| π |
| 3 |
| π |
| 3 |
| π |
| 6 |
| π |
| 3 |
1-cos2(α-
|
| 8 |
| 17 |
∴cosα=cos[(α-
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| 15 |
| 17 |
| 1 |
| 2 |
| 8 |
| 17 |
| ||
| 2 |
15±8
| ||
| 34 |
故答案为:
15±8
| ||
| 34 |
点评:本题主要考察两角和与差的余弦函数公式的应用,属于基础题.
练习册系列答案
相关题目
下列各组函数中,表示相等函数的是( )
A、y=|x|与y=(
| |||
| B、y=1与y=x0 | |||
C、y=x与y=
| |||
D、y=x-3与y=
|