题目内容

16.数列的通项是an=$\frac{1}{\sqrt{n}}$-$\frac{1}{\sqrt{n+1}}$,记Sn=a1+a2+…+an,求使Sn>$\frac{2}{3}$的n的最小值.

分析 利用“裂项求和”与不等式的性质即可得出.

解答 解:∵an=$\frac{1}{\sqrt{n}}$-$\frac{1}{\sqrt{n+1}}$,
∴Sn=a1+a2+…+an=$(1-\frac{1}{\sqrt{2}})$+$(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}})$+…+$(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}})$
=1-$\frac{1}{\sqrt{n+1}}$,
使Sn>$\frac{2}{3}$成立,即1-$\frac{1}{\sqrt{n+1}}$>$\frac{2}{3}$,
化为:$\frac{1}{3}>$$\frac{1}{\sqrt{n+1}}$,
解得:n>8.
∴使Sn>$\frac{2}{3}$成立的n的最小值为9.

点评 本题考查了“裂项求和”与不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网