题目内容
11.已知△ABC的内角A,B,C所对的边分别为a,b,c,且a=2,b=3,tanB=3,则sinA的值为$\frac{\sqrt{10}}{5}$.分析 由已知利用同角三角函数基本关系式可求sinB,进而利用正弦定理即可计算得解.
解答 解:∵tanB=$\frac{sinB}{cosB}$=3,sin2B+cos2B=1,
∴解得:$sinB=\frac{{3\sqrt{10}}}{10}$,
又∵a=2,b=3,
∴由正弦定理可得$\frac{2}{sinA}=\frac{3}{{\frac{{3\sqrt{10}}}{10}}}$,
∴解得:$sinA=\frac{{\sqrt{10}}}{5}$.
故答案为:$\frac{\sqrt{10}}{5}$.
点评 本题主要考查了同角三角函数基本关系式,正弦定理在解三角形中的综合应用,考查了转化思想,属于基础题.
练习册系列答案
相关题目
2.已知Sn是等差数列{an}的前n项和,且s6>s7>s5,给出下列五个命题:①d>0;②S11>0;③S12<0;④数列{Sn}中的最大项为S11;⑤|a5|>|a7|.其中正确命题的个数为( )
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
6.有以下结论:
①已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;
②已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1.
下列说法中正确的是( )
①已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;
②已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1.
下列说法中正确的是( )
| A. | ①与②的假设都错误 | B. | ①与②的假设都正确 | ||
| C. | ①的假设正确;②的假设错误 | D. | ①的假设错误;②的假设正确 |
1.已知函数f(x)=x2(2x-2-x),则不等式f(2x+1)+f(1)<0的解集是( )
| A. | $({-∞,-\frac{1}{2}})$ | B. | (-∞,-1) | C. | $({-\frac{1}{2},+∞})$ | D. | (-1,+∞) |