题目内容
17.已知函数$f(x)=\left\{\begin{array}{l}{e^x}+a,x≤0\\{x^2}+1+a.x>0\end{array}\right.$,a为实数,若f(2-x)≥f(x),则x的取值范围是( )| A. | (-∞,1] | B. | (-∞,-1] | C. | [-1,+∞) | D. | [1,+∞) |
分析 根据分段函数的单调性即可判断.
解答 解:由题意可得函数f(x)在R上为单调递增函数,
∵f(2-x)≥f(x),
∴2-x≥x,
解得x≤1,
故选:A
点评 本题考查函数的单调性的运用:解不等式,属于基础题.
练习册系列答案
相关题目
7.设集合A={x∈R|x-1>0},B={x∈R|x<0},C={x∈R|x(x-1)>0},则“x∈A∪B“是“x∈C“的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
8.设函数f(x)=$\left\{\begin{array}{l}{{e}^{x},x≥0}\\{{x}^{2},x<0}\end{array}\right.$,若方程f(f(x))=a(a>0)恰有两个不相等的实根x1,x2,则e${\;}^{{x}_{1}}$•e${\;}^{{x}_{2}}$的最大值为( )
| A. | $\frac{1}{{e}^{2}}$ | B. | 2(ln2-1) | C. | $\frac{4}{{e}^{2}}$ | D. | ln2-1 |
12.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x-m},x<2}\\{\frac{mx}{4{x}^{2}+16},x≥2}\end{array}\right.$,对任意的x1∈[2,+∞)总存在x2∈(-∞,2],使得f(x1)=f(x2),则实数m的取值范围是( )
| A. | [2,4) | B. | (-∞,4] | C. | [3,4) | D. | (0,4) |
2.
已知函数$f(x)=Asin({ωx+φ})({A>0,ω>0,|φ|<\frac{π}{2}})$的部分图象如图所示,将函数y=f(x)的图象向左平移$\frac{4π}{3}$个单位,得到函数y=g(x)的图象,则函数y=g(x)在区间$[{\frac{π}{2},\frac{5π}{2}}]$上的最大值为( )
| A. | 3 | B. | $\frac{{3\sqrt{3}}}{2}$ | C. | $\frac{{3\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |