题目内容
7.设集合A={x∈R|x-1>0},B={x∈R|x<0},C={x∈R|x(x-1)>0},则“x∈A∪B“是“x∈C“的( )| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
分析 利用不等式的解法化简集合A,B,C,再利用集合的运算性质、简易逻辑的判定方法即可得出.
解答 解:集合A={x∈R|x-1>0}={x|x>1},B={x∈R|x<0},C={x∈R|x(x-1)>0}={x|x>1,或x<0},
A∪B={x|x<0,或x>1}.
则“x∈A∪B“是“x∈C“的充要条件.
故选:C.
点评 本题考查了不等式的解法、集合的运算性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
18.已知O为坐标原点,F1、F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左右焦点,A为C的左顶点,P为C上一点,且PF1⊥x轴,过点A的直线l与线段PF1交于点M,与y轴交于点E,若直线F2M与y轴交点为N,OE=2ON,则C的离心率为( )
| A. | $\frac{1}{3}$ | B. | 2 | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
15.某种电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为0.5,两次闭合后都出现红灯的概率为0.2,则在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为( )
| A. | 0.1 | B. | 0.2 | C. | 0.4 | D. | 0.5 |
12.设函数f(x)=-x2+14x+15,数列{an}满足an=f(n),n∈N+,数列{an}的前n项和Sn最大时,n=( )
| A. | 14 | B. | 15 | C. | 14或15 | D. | 15或16 |
19.已知集合A={x|x2+5x>0},B={x|-3<x<4},则A∩B等于( )
| A. | (-5,0) | B. | (-3,0) | C. | (0,4) | D. | (-5,4) |
17.已知函数$f(x)=\left\{\begin{array}{l}{e^x}+a,x≤0\\{x^2}+1+a.x>0\end{array}\right.$,a为实数,若f(2-x)≥f(x),则x的取值范围是( )
| A. | (-∞,1] | B. | (-∞,-1] | C. | [-1,+∞) | D. | [1,+∞) |