题目内容
已知a1=2,且an+1=
,求an.
| 2an |
| an+1 |
考点:数列的概念及简单表示法,数列递推式
专题:等差数列与等比数列
分析:原式可化简为
-
=
,令bn=
,则有bn+1-1=
(bn-1).可得{bn-1}是等比数列,故通项公式bn-1=(b1-1)(
)n-1=-(
)n.化简可得bn=1-(
)n,从而可求得an.
| 1 |
| an+1 |
| 1 |
| 2an |
| 1 |
| 2 |
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
解答:
解:∵数列{an}满足a1=2,且 an+1=
,
∴
=
+
,
∴
-
=
,又
=
,
令bn=
,
则:
-
=
化为:bn+1-1=
(bn-1).
{bn-1}是等比数列,首项为:-
,公比为
,
∴bn-1=(b1-1)(
)n-1=-(
)n.
bn=1-(
)n,
∴
=1-(
)n,
∴an=
.
| 2an |
| an+1 |
∴
| 1 |
| an+1 |
| 1 |
| 2an |
| 1 |
| 2 |
∴
| 1 |
| an+1 |
| 1 |
| 2an |
| 1 |
| 2 |
| 1 |
| a1 |
| 1 |
| 2 |
令bn=
| 1 |
| an |
则:
| 1 |
| an+1 |
| 1 |
| 2an |
| 1 |
| 2 |
| 1 |
| 2 |
{bn-1}是等比数列,首项为:-
| 1 |
| 2 |
| 1 |
| 2 |
∴bn-1=(b1-1)(
| 1 |
| 2 |
| 1 |
| 2 |
bn=1-(
| 1 |
| 2 |
∴
| 1 |
| an |
| 1 |
| 2 |
∴an=
| 2n |
| 2n-1 |
点评:本题主要考查了利用数列的递推公式构造等比数列,数列通项公式的求法,属于中档题.
练习册系列答案
相关题目