题目内容
12.已知数列{an}的首项${a_1}=\frac{2}{3}$,${a_{n+1}}=\frac{{2{a_n}}}{{{a_n}+1}}$,n=1,2,3,….(Ⅰ)证明:数列$\{\frac{1}{a_n}-1\}$是等比数列;
(Ⅱ)数列 $\{\frac{2^n}{a_n}\}$的前n项和Sn.
分析 (Ⅰ)由${a_{n+1}}=\frac{{2{a_n}}}{{{a_n}+1}}$,两边取倒数可得:$\frac{1}{{{a_{n+1}}}}=\frac{{{a_n}+1}}{{2{a_n}}}=\frac{1}{2}+\frac{1}{2}•\frac{1}{a_n}$,变形为$\frac{1}{{{a_{n+1}}}}-1=\frac{1}{2}(\frac{1}{a_n}-1)$,即可证明;另解:设 ${b_n}=\frac{1}{a_n}-1$,则${a_n}=\frac{1}{{{b_n}+1}}$,可得$\frac{1}{{{b_{n+1}}+1}}=\frac{{\frac{2}{{{b_n}+1}}}}{{\frac{1}{{{b_n}+1}}+1}}$,即可证明.
(Ⅱ)由(Ⅰ)知:$\frac{1}{a_n}=\frac{1}{2^n}+1$,再利用等比数列的前n项和公式即可得出.
解答 解:(Ⅰ)∵${a_{n+1}}=\frac{{2{a_n}}}{{{a_n}+1}}$,两边取倒数可得:$\frac{1}{{{a_{n+1}}}}=\frac{{{a_n}+1}}{{2{a_n}}}=\frac{1}{2}+\frac{1}{2}•\frac{1}{a_n}$,
∴$\frac{1}{{{a_{n+1}}}}-1=\frac{1}{2}(\frac{1}{a_n}-1)$,又${a_1}=\frac{2}{3}$,
∴$\frac{1}{a_1}-1=\frac{1}{2}$,
∴数列$\{\frac{1}{a_n}-1\}$是以为$\frac{1}{2}$首项,$\frac{1}{2}$为公比的等比数列.
另解:设 ${b_n}=\frac{1}{a_n}-1$,则${a_n}=\frac{1}{{{b_n}+1}}$,所以$\frac{1}{{{b_{n+1}}+1}}=\frac{{\frac{2}{{{b_n}+1}}}}{{\frac{1}{{{b_n}+1}}+1}}$,
得 2bn+1=bn,而${b_1}=\frac{1}{2}$,所以命题得证.
(Ⅱ)由(Ⅰ)知$\frac{1}{{{a_{n+1}}}}-1=\frac{1}{2}•\frac{1}{{{2^{n-1}}}}=\frac{1}{2^n}$,即$\frac{1}{a_n}=\frac{1}{2^n}+1$,
∴$\frac{2^n}{a_n}={2^n}+1$.
∴${T_n}={2^{n+1}}-1+n$.
点评 本题考查了等比数列的定义通项公式及其前n项和公式、“取倒数法”,考查了推理能力与计算能力,属于中档题.
| A. | f′(x)=2sin(2x+$\frac{π}{3}$) | B. | f′(x)=4sin(2x+$\frac{π}{3}$) | C. | f′(x)=sin(4x+$\frac{2π}{3}$) | D. | f′(x)=2sin(4x+$\frac{2π}{3}$) |
| A. | -3 | B. | 3 | C. | $-\frac{{\sqrt{5}}}{5}$ | D. | $\frac{{\sqrt{5}}}{5}$ |
| A. | -8<x<3 | B. | x>8 | C. | x<-3 | D. | x<-8或x>3 |
| A. | 9.4,0.484 | B. | 9.4,0.016 | C. | 9.5,0.04 | D. | 9.5,0.016 |
| A. | $y=\sqrt{x}$ | B. | y=3x | C. | y=lgx | D. | y=x3 |
| A. | $\frac{3}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{1}{2}$ | D. | -$\frac{1}{2}$i |