ÌâÄ¿ÄÚÈÝ
12£®Ä³µ¥Î»ÓÐÄÐÖ°¹¤600Ãû£¬Å®Ö°¹¤400ÈË£¬ÔÚµ¥Î»ÏëÁ˽Ȿµ¥Î»Ö°¹¤µÄÔ˶¯×´Ì¬£¬¸ù¾ÝÐÔ±ð²ÉÈ¡·Ö²ã³éÑùµÄ·½·¨´ÓÈ«ÌåÖ°¹¤ÖгéÈ¡100ÈË£¬µ÷²éËûÃÇÆ½¾ùÿÌìÔ˶¯µÄʱ¼ä£¨µ¥Î»£ºÐ¡Ê±£©£¬Í³¼Æ±íÃ÷¸Ãµ¥Î»Ö°¹¤Æ½¾ùÿÌìÔ˶¯µÄʱ¼ä·¶Î§ÊÇ[0£¬2]£®Èô¹æ¶¨Æ½¾ùÿÌìÔ˶¯µÄʱ¼ä²»ÉÙÓÚ1СʱµÄΪ¡°Ô˶¯´ïÈË¡±£¬µÍÓÚ1СʱµÄΪ¡°·ÇÔ˶¯´ïÈË¡±£®¸ù¾Ýµ÷²éµÄÊý¾Ý£¬°´ÐÔ±ðÓëÊÇ·ñΪÔ˶¯´ïÈ˽øÐÐͳ¼Æ£¬µÃµ½ÈçÏÂ2¡Á2ÁÐÁª±í£®| Ô˶¯Ê±¼ä ÐÔ±ð | Ô˶¯´ïÈË | ·ÇÔ˶¯´ïÈË | ºÏ¼Æ |
| ÄÐ | 36 | ||
| Å® | 26 | ||
| ºÏ¼Æ | 100 |
£¨¢ò£©½«´ËÑù±¾µÄƵÂʹÀ¼ÆÎª×ÜÌåµÄ¸ÅÂÊ£¬Ëæ»úµ÷²é¸Ãµ¥Î»µÄ3ÃûÄÐÖ°¹¤£¬Éèµ÷²éµÄ3ÈËÖÐÔ˶¯´ïÈ˵ÄÈËÊýÎªËæ»ú±äÁ¿X£¬ÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍûE£¨X£©¼°·½²îD£¨X£©£®
¸½±í¼°¹«Ê½£º
| ¡¡P£¨K2¡Ýk0£© | ¡¡0.15 | 0.10¡¡ | 0.05¡¡ | 0.025¡¡ | 0.010¡¡ |
| ¡¡k0 | ¡¡2.072 | 2.706¡¡ | 3.841¡¡ | ¡¡5.024 | 6.635 |
·ÖÎö £¨I£©¼ÆËãK2£¬¸ù¾ÝÁÙ½çÖµ±í×÷³ö½áÂÛ£»
£¨II£©·Ö±ð¼ÆËãX=0£¬1£¬2£¬3ʱµÄ¸ÅÂʵóö·Ö²¼ÁУ¬¸ù¾Ý·Ö²¼ÁеóöÊýѧÆÚÍûºÍ·½²î£®
½â´ð ½â£º£¨I£©ÓÉÌâÒ⣬¸Ãµ¥Î»¸ù¾ÝÐÔ±ð²ÉÈ¡·Ö²ã³éÑùµÄ·½·¨³éÈ¡µÄ100ÈËÖУ¬ÓÐ60ÈËΪÄÐÖ°¹¤£¬40ÈËΪŮְ¹¤£¬¾Ý´Ë2¡Á2ÁÐÁª±íÖеÄÊý¾Ý²¹³äÈçÏ£®
Ô˶¯Ê±¼ä ÐÔ±ð | Ô˶¯´ïÈË | ·ÇÔ˶¯´ïÈË | ºÏ¼Æ |
| ÄÐ | 36 | 24 | 60 |
| Å® | 14 | 26 | 40 |
| ºÏ¼Æ | 50 | 50 | 100 |
ÓɱíÖÐÊý¾ÝµÃ¹Û²âÖµK2=$\frac{100¡Á£¨36¡Á26-14¡Á24£©^{2}}{60¡Á40¡Á50¡Á50}$=6£¾5.024£¬
ËùÒÔÔÚ·¸´íÎó¸ÅÂʲ»³¬¹ý0.025µÄǰÌáÏ£¬¿ÉÒÔÈÏΪÐÔ±ðÓëÊÇ·ñΪÔ˶¯´ïÈËÓйأ®¡£¨5·Ö£©
£¨2£©Ëæ»úµ÷²éÒ»ÃûÄÐÉú£¬ÔòÕâÃûÄÐÉúΪÔ˶¯´ïÈ˵ĸÅÂÊΪP=$\frac{36}{60}$=$\frac{3}{5}$£®
XµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£®
¡àP£¨X=0£©=£¨1-$\frac{3}{5}$£©3=$\frac{8}{125}$£¬P£¨X=1£©=C31£¨$\frac{3}{5}$£©£¨1-$\frac{3}{5}$£©2=$\frac{36}{125}$£¬
P£¨X=2£©=C32£¨$\frac{3}{5}$£©2£¨1-$\frac{3}{5}$£©=$\frac{54}{125}$£¬P£¨X=3£©=£¨$\frac{3}{5}$£©3=$\frac{27}{125}$£®
¡àXµÄ·Ö²¼ÁÐΪ£º
| X | 0 | 1 | 2 | 3 |
| P | $\frac{8}{125}$ | $\frac{36}{125}$ | $\frac{54}{125}$ | $\frac{27}{125}$ |
µãÆÀ ±¾Ì⿼²éÁ˶ÀÁ¢ÐÔ¼ìÑéµÄÓ¦Óã¬ÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁС¢ÊýѧÆÚÍû¡¢·½²îµÄÇ󷨣¬ÊÇÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
2£®ÒÑÖªÊýÁÐ{an}µÄͨÏʽΪan=3n-50£¬Ôòµ±nµÈÓÚ£¨¡¡¡¡£©Ê±£¬SnÈ¡µÃ×îСֵ£¿
| A£® | 16 | B£® | 17 | C£® | 18 | D£® | 16»ò17 |
3£®ÏÂÁÐÊÇxºÍyÖ®¼äµÄÒ»×éÊý¾Ý
Ôòy¹ØÓÚxµÄÏßÐԻع鷽³ÌΪy=bx+a£¬¶ÔÓ¦µÄÖ±Ï߱عýµã£¨¡¡¡¡£©
| x | 0 | 1 | 2 | 3 |
| y | 1 | 3 | 5 | 7 |
| A£® | £¨2£¬2£© | B£® | £¨$\frac{3}{2}£¬2$£© | C£® | £¨ $\frac{3}{2}£¬4$£© | D£® | £¨1£¬2£© |
20£®ÒÑÖªº¯Êýf£¨x£©=$\sqrt{3}$sin£¨2x+$\frac{¦Ð}{3}$£©£¬ÆäÖÐx¡ÊR£¬ÏÂÁнáÂÛÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | f£¨x£©ÊÇ×îСÕýÖÜÆÚΪ¦ÐµÄżº¯Êý | |
| B£® | f£¨x£©µÄÒ»Ìõ¶Ô³ÆÖáÊÇ $x=\frac{¦Ð}{3}$ | |
| C£® | f£¨x£©µÄ×î´óֵΪ2 | |
| D£® | ½«º¯Êý$y=\sqrt{3}sin2x$µÄͼÏóÏò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»µÃµ½º¯Êýf£¨x£©µÄͼÏó |
17£®sin315¡ãµÄֵΪ£¨¡¡¡¡£©
| A£® | -$\frac{\sqrt{3}}{2}$ | B£® | $\frac{\sqrt{3}}{2}$ | C£® | $\frac{\sqrt{2}}{2}$ | D£® | -$\frac{\sqrt{2}}{2}$ |