题目内容

2.如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=2,则$\overrightarrow{AP}$•$\overrightarrow{AC}$=8.

分析 设对角线AC、BD相交于O点,根据平行四边形的性质与向量加法法则,得到$\overrightarrow{AC}=2\overrightarrow{AO}$=2($\overrightarrow{AP}+\overrightarrow{PO}$),代入$\overrightarrow{AP}$•$\overrightarrow{AC}$,展开后即可求得答案.

解答 解:如图,
设对角线AC、BD相交于O点,
∵四边形ABCD是平行四边形,
∴$\overrightarrow{AC}=2\overrightarrow{AO}$=2($\overrightarrow{AP}+\overrightarrow{PO}$),
因此,$\overrightarrow{AP}•\overrightarrow{AC}$=$\overrightarrow{AP}•2\overrightarrow{AO}$=2$\overrightarrow{AP}•\overrightarrow{AO}$=2$\overrightarrow{AP}•(\overrightarrow{AP}+\overrightarrow{PO})$=2${\overrightarrow{AP}}^{2}+2\overrightarrow{AP}•\overrightarrow{PO}$,
∵|$\overrightarrow{AP}$|=2,$\overrightarrow{AP}⊥\overrightarrow{PO}$,
∴$|\overrightarrow{AP}{|}^{2}=4,\overrightarrow{AP}•\overrightarrow{PO}=0$,
由此可得$\overrightarrow{AP}•\overrightarrow{AC}=8$.
故答案为:8.

点评 本题在平行四边形中求向量的数量积,着重考查了平行四边形的性质、向量的线性运算性质、向量的数量积及其运算性质等知识,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网