题目内容
4.曲线f(x)=$\frac{1}{2}$x2+lnx的切线的斜率的最小值为2.分析 先求出曲线对应函数的导数,由基本不等式求出导数的最小值,即得到曲线斜率的最小值.
解答 解:曲线f(x)=$\frac{1}{2}$x2+lnx的切线的斜率就是函数的导数,
f′(x)=x+$\frac{1}{x}$,由函数的定义域知 x>0,
∴f′(x)=x+$\frac{1}{x}$≥2,当且仅当x=$\frac{1}{x}$,即x=1时,等号成立.
∴函数的导数的最小值为2,
故对应曲线斜率的最小值为2,
故答案为:2.
点评 本题考查曲线的切线斜率与对应的函数的导数的关系,以及基本不等式的应用,体现了转化的数学思想.
练习册系列答案
相关题目
14.已知等差数列{an}中,且a4+a12=10,则前15项和S15=( )
| A. | 15 | B. | 20 | C. | 21 | D. | 75 |
12.某单位有男职工600名,女职工400人,在单位想了解本单位职工的运动状态,根据性别采取分层抽样的方法从全体职工中抽取100人,调查他们平均每天运动的时间(单位:小时),统计表明该单位职工平均每天运动的时间范围是[0,2].若规定平均每天运动的时间不少于1小时的为“运动达人”,低于1小时的为“非运动达人”.根据调查的数据,按性别与是否为运动达人进行统计,得到如下2×2列联表.
(Ⅰ)请根据题目信息,将2×2列联表中的数据补充完整,并通过计算判断能否在犯错误概率不超过0.025的前提下认为性别与是否为运动达人有关;
(Ⅱ)将此样本的频率估计为总体的概率,随机调查该单位的3名男职工,设调查的3人中运动达人的人数为随机变量X,求X的分布列和数学期望E(X)及方差D(X).
附表及公式:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
| 运动时间 性别 | 运动达人 | 非运动达人 | 合计 |
| 男 | 36 | ||
| 女 | 26 | ||
| 合计 | 100 |
(Ⅱ)将此样本的频率估计为总体的概率,随机调查该单位的3名男职工,设调查的3人中运动达人的人数为随机变量X,求X的分布列和数学期望E(X)及方差D(X).
附表及公式:
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
19.已知向量$\overrightarrow{a}$=(2cosφ,2sinφ),φ∈(90°,180°),$\overrightarrow{b}$=(1,1),则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为( )
| A. | φ | B. | 45°+φ | C. | 135°-φ | D. | φ-45° |
9.已知等差数列{an}的前n项和记为Sn,若a4+a6+a8=15,则S11的值为( )
| A. | 55 | B. | $\frac{55}{2}$ | C. | 165 | D. | $\frac{165}{2}$ |
13.函数f(x)=lnx+1的定义域为( )
| A. | (0,+∞) | B. | (1,+∞) | C. | (-1,+∞) | D. | R |
14.已知如图所示的程序框图,当输入n=99时,输出S的值( )

| A. | $\frac{100}{101}$ | B. | $\frac{99}{100}$ | C. | $\frac{98}{99}$ | D. | $\frac{97}{98}$ |