题目内容

16.在长方体ABCD-A1B1C1D1中,AB=BC=EC=$\frac{1}{2}A{A}_{1}$.求证:
(1)AC1∥平面BDE;
(2)A1E⊥平面BDE.

分析 (1)证明线面平行,只需证明直线与平面内的一条直线平行即可.连接AC与DB交于O,连接OE,AC1∥OE,即可证明AC1∥平面BDE.
(2)证明线面垂直,只需证明直线与平面内的两条相交直线垂直即可.连接OA1,可证OA1⊥DB,OE⊥DB,平面A1OE⊥DB.可得A1E⊥DB.利用勾股定理证明A1E⊥EB即可得A1E⊥平面BDE.

解答 解:(1)ABCD-A1B1C1D1是长方体,AB=BC=EC=$\frac{1}{2}A{A}_{1}$.
可得平面ABCD和平面A1B1C1D1是正方形,E为CC1的中点.
连接AC与DB交于O,连接OE,
可得:AC1∥OE,
OE?平面BDE.
∴AC1∥平面BDE.
(2)连接OA1
根据三垂线定理,可得OA1⊥DB,OE⊥DB,OA1∩OE=O,
∴平面A1OE⊥DB.
可得A1E⊥DB.
∵E为CC1的中点.设AB=BC=EC=$\frac{1}{2}$AA1=a
∴$BE=\sqrt{2}a$,A1E=$\sqrt{3}a$,A1B=$\sqrt{5}a$
∵A1B2=A1E2+BE2
∴A1E⊥EB.
∵EB?平面BDE.BD?平面BDE.EB∩BD=B,
∴A1E⊥平面BDE.

点评 本题考查了线面平行,线面垂直的证明.考查学生对书本知识的掌握情况以及空间想象,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网