题目内容

数列{an}满足a0=
3
,an+1=[an]+
1
{an}
,([an]与{an}分别表示an的整数部分与分数部分),则a2014=(  )
A、3020+
3
B、3020+
3
-1
2
C、
3
+3018
D、3018+
3
-1
2
考点:数列递推式
专题:点列、递归数列与数学归纳法
分析:根据数列的递推关系,求出数列的前几项,得到数列的规律性,即可得到结论.
解答: 解:∵a0=
3
,an+1=[an]+
1
{an}
,a0=
3
=1+(
3
-1),
∴a1=[a0]+{
1
a0
}=1+
1
3
-1
=1+
3
+1
2
=2+
3
-1
2

a2=[a1]+{
1
a1
}=2+
1
3
-1
2
=2+
2
3
-1
=4+(
3
-1)

a3=[a2]+{
1
a2
}=4+
1
3
-1
=4+
3
+1
2
=5+
3
-1
2

a4=[a3]+{
1
a3
}=5+
1
3
-1
2
=5+
2
3
-1
=7+(
3
-1)

a5=[a4]+{
1
a4
}=7+
1
3
-1
=7+
3
+1
2
=8+
3
-1
2


a6=[a5]+{
1
a5
}=8+
2
3
-1
=8+
3
+1
=10+(
3
-1
),

a7=[a6]+{
1
a6
}=10+
1
3
-1
=10+
3
+1
2
=11+
3
-1
2


a8=[a7]+{
1
a7
}=11+
2
3
-1
=11+
3
+1
=13+(
3
-1
),

a2n=(3n+1)+(
3
-1
),
则a2014=a2×1007=(3×1007+1)+(
3
-1
)=3020+
3

故选:A
点评:本题主要考查数列项的求解,根据数列的递推关系得到数列的规律性,是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网