题目内容
13.已知函数f(x)为奇函数,且当x>0时,f(x)=$\sqrt{x}$-$\frac{2}{x}$,则f(-4)=-$\frac{3}{2}$.分析 先根据奇函数的定义把所求问题转化,再代入对应的解析式即可求出结论.
解答 解:∵函数f(x)是R上的奇函数,
∴f(-4)=-f(4);
∵当x>0时,f(x)=$\sqrt{x}$-$\frac{2}{x}$,
∴f(-4)=-f(4)=-2+$\frac{1}{2}$=-$\frac{3}{2}$.
故答案为:-$\frac{3}{2}$.
点评 本题主要考查函数奇偶性的性质应用.解决这类问题的关键在于熟练掌握:奇函数:f(-x)=-f(x);偶函数:f(-x)=f(x).
练习册系列答案
相关题目
4.当1<m<$\frac{3}{2}$时,复数(3+i)-m(2+i)在复平面内对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
8.设Sn是等差数列{an}的前n项和,且满足等式S7=a5+a6+a8+a9,则$\frac{{a}_{7}}{{a}_{4}}$的值为( )
| A. | $\frac{7}{4}$ | B. | $\frac{4}{7}$ | C. | $\frac{7}{8}$ | D. | $\frac{8}{7}$ |
18.某学校一天共排7节课(其中上午4节、下午3节),某教师某天高三年级1班和2班各有一节课,但他要求不能连排2节课(其中上午第4节和下午第1节不算连排),那么该教师这一天的课的所有可能的排法种数共有( )
| A. | 16 | B. | 15 | C. | 32 | D. | 30 |
2.某空调专卖店试销A、B、C三种新型空调,销售情况如表所示:
(1)求A型空调前三周的平均周销售量;
(2)根据C型空调前三周的销售情况,预估C型空调五周的平均周销售量为10台,当C型空调周销售量的方差最小时,求C4,C5的值;
(注:方差s2=$\frac{1}{n}$[x1-$\overline{x}$)2+(x${\;}_{2}-\overline{x}$)2+…+(xn-$\overline{x}$)2],其中$\overline{x}$为x1,x2,…,xn的平均数)
(3)为跟踪调查空调的使用情况,根据销售记录,从第二周和第三周售出的空调中分别随机抽取一台,求抽取的两台空调中A型空调台数X的分布列及数学期望.
| 第一周 | 第二周 | 第三周 | 第四周 | 第五周 | |
| A型数量(台) | 11 | 10 | 15 | A4 | A5 |
| B型数量(台) | 10 | 12 | 13 | B4 | B5 |
| C型数量(台) | 15 | 8 | 12 | C4 | C5 |
(2)根据C型空调前三周的销售情况,预估C型空调五周的平均周销售量为10台,当C型空调周销售量的方差最小时,求C4,C5的值;
(注:方差s2=$\frac{1}{n}$[x1-$\overline{x}$)2+(x${\;}_{2}-\overline{x}$)2+…+(xn-$\overline{x}$)2],其中$\overline{x}$为x1,x2,…,xn的平均数)
(3)为跟踪调查空调的使用情况,根据销售记录,从第二周和第三周售出的空调中分别随机抽取一台,求抽取的两台空调中A型空调台数X的分布列及数学期望.
3.已知命题:p“?x0∈R,x02+2ax0+a≤0”为假命题,则实数a的取值范围是( )
| A. | (0,1) | B. | [0,1] | C. | (1,2) | D. | (-∞,0)∪(1,+∞) |