题目内容
4.当1<m<$\frac{3}{2}$时,复数(3+i)-m(2+i)在复平面内对应的点位于( )| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 利用复数的运算法则、几何意义、不等式的性质即可得出.
解答 解:复数(3+i)-m(2+i)=(3-2m)+(1-m)i,
∵1<m<$\frac{3}{2}$,∴3-2m>0,1-m<0,
在复平面内对应的点位于第四象限,
故选:D.
点评 本题考查了复数的运算法则、不等式的性质、几何意义,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
7.函数f(x)=2sin(πx+$\frac{π}{6}$)的定义域是(-$\frac{1}{3}$,$\frac{7}{3}$]直线y=kx+1与函数f(x)的图象从左至右的交点的横坐标恰好构成等差数列,则k的值是( )
| A. | -$\frac{6}{5}$ | B. | -1 | C. | 0 | D. | 6 |
19.若(2x-1)2016=a0+a1x+…+a2016x2016(x∈R),则$\frac{1}{2}$+$\frac{{a}_{2}}{{2}^{2}{a}_{1}}$+$\frac{{a}_{3}}{{2}^{3}{a}_{1}}$+…+$\frac{{a}_{2016}}{{2}^{2016}{a}_{1}}$=( )
| A. | -$\frac{1}{2015}$ | B. | $\frac{1}{2016}$ | C. | -$\frac{1}{4030}$ | D. | $\frac{1}{4032}$ |
9.已知集合A={x|-3<x<6},B={x|2<x<7},则A∩(∁RB)=( )
| A. | (2,6) | B. | (2,7) | C. | (-3,2] | D. | (-3,2) |
16.若关于x的不等式xex-ax+a<0的解集为(m,n)(n<0),且(m,n)中只有一个整数,则实数a的取值范围是( )
| A. | [$\frac{1}{{e}^{2}}$,$\frac{1}{e}$) | B. | [$\frac{2}{3{e}^{2}}$,$\frac{1}{2e}$) | C. | [$\frac{1}{{e}^{2}}$,$\frac{2}{e}$) | D. | [$\frac{2}{3{e}^{2}}$,$\frac{1}{e}$) |
14.执行如图所示的程序框图,若输入的x值为2,则输出v的值为( )

| A. | 31 | B. | 32 | C. | 63 | D. | 64 |