题目内容

1.设函数f(x)=$\frac{1}{{2}^{x}+\sqrt{2}}$,类比课本中推导等差数列前n项和公式的方法,可求得f(-2015)+f(-2014)+f(-2013)+…+f(2014)+f(2015)+f(2016)的值为1008$\sqrt{2}$.

分析 根据课本中推导等差数列前n项和的公式的方法-倒序相加法,观察所求式子的特点,应先求f(x)+f(1-x)的值,从而求出即可.

解答 解:∵f(x)=$\frac{1}{{2}^{x}+\sqrt{2}}$,
∴f(x)+f(1-x)
=$\frac{1}{{2}^{x}+\sqrt{2}}$+$\frac{1}{{2}^{1-x}+\sqrt{2}}$
=$\frac{1}{{2}^{x}+\sqrt{2}}$+$\frac{{2}^{x}}{2+\sqrt{2}{•2}^{x}}$
=$\frac{{2}^{x}+\sqrt{2}}{\sqrt{2}{(2}^{x}+\sqrt{2})}$=$\frac{\sqrt{2}}{2}$,
即 f(-2015)+f(2016)=$\frac{\sqrt{2}}{2}$,
f(-2014)+f(2015)=$\frac{\sqrt{2}}{2}$,
f(-2013)+f(2014)=$\frac{\sqrt{2}}{2}$,
…,
f(-2)+f(3)=$\frac{\sqrt{2}}{2}$,
f(-1)+f(2)=$\frac{\sqrt{2}}{2}$,
f(0)+f(1)=$\frac{\sqrt{2}}{2}$,
∴f(-2015)+f(-2014)+f(-2013)+…+f(2014)+f(2015)+f(2016)=2016×$\frac{\sqrt{2}}{2}$=1008$\sqrt{2}$,
故答案为:1008$\sqrt{2}$.

点评 本题为规律性的题目,要善于观察式子的特点,并且此题给出了明确的方法,从而降低了本题难度.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网