题目内容

10.在极坐标系中曲线C的极坐标方程为ρsin2θ-cosθ=0,点$M({1,\frac{π}{2}})$.以极点O为原点,以极轴为x轴正半轴建立直角坐标系.斜率为-1的直线l过点M,且与曲线C交于A,B两点.
(1)求曲线C和直线l的直角坐标方程;
(2)求两点A,B之间的距离.

分析 (1)利用x=ρcosθ,y=ρsinθ,即可得出曲线C的直角坐标方程;根据直线的斜率和点的坐标,求出直线的方程即可;
(2)设出A,B的坐标,根据弦长公式求出|AB|的长即可.

解答 解:(1)x=ρcosθ,y=ρsinθ,
由ρsin2θ-cosθ=0得ρ2sin2θ=ρcosθ.
∴y2=x即为曲线C的直角坐标方程; 
点M的直角坐标为(0,1),
直线l的斜率是-1,故直线l的方程是:y-1=-x,
即x+y-1=0;
(2)设A(x1,y1),B(x2,y2
由(1)得$\left\{\begin{array}{l}{{y}^{2}=x}\\{x+y-1=0}\end{array}\right.$,
得x2-3x+1=0,
故x1+x2=3,x1x2=1,
由弦长公式得|AB|=$\sqrt{1{+k}^{2}}$$\sqrt{{{(x}_{1}{+x}_{2})}^{2}-{{4x}_{1}x}_{2}}$=$\sqrt{10}$.

点评 本题考查了极坐标方程化为直角坐标方程、直线参数方程的应用、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网