题目内容
6.计算:$\sqrt{2}-1≈0.414,\sqrt{3}-\sqrt{2}$≈0.318;∴$\sqrt{2}-1>\sqrt{3}-\sqrt{2}$;又计算:$\sqrt{5}-2≈0.236,\sqrt{6}-\sqrt{5}≈0.213,\sqrt{7}-\sqrt{6}$≈0.196,∴$\sqrt{5}-2>\sqrt{6}-\sqrt{5}$,$\sqrt{6}-\sqrt{5}>\sqrt{7}-\sqrt{6}$.(1)分析以上结论,试写出一个一般性的命题.
(2)判断该命题的真假,并给出证明.
分析 (1)根据所给结论,可写出一个一般性的命题.
(2)利用综合法证明命题是真命题.
解答 解:(1)一般性的命题n是正整数,则$\sqrt{n+1}$-$\sqrt{n}$>$\sqrt{n+2}$-$\sqrt{n+1}$.
(2)命题是真命题.
∵$\sqrt{n+1}$-$\sqrt{n}$=$\frac{1}{\sqrt{n+1}+\sqrt{n}}$,$\sqrt{n+2}$-$\sqrt{n+1}$=$\frac{1}{\sqrt{n+2}+\sqrt{n+1}}$,$\frac{1}{\sqrt{n+1}+\sqrt{n}}$>$\frac{1}{\sqrt{n+2}+\sqrt{n+1}}$,
∴$\sqrt{n+1}$-$\sqrt{n}$>$\sqrt{n+2}$-$\sqrt{n+1}$.
点评 本题考查归纳推理,考查综合法的运用,属于基础题.
练习册系列答案
相关题目
6.
某公司为确定2017年度投入某种产品的宣传费,需了解年宣传费x(单位:万元)对年销售收益y(单位:万元)的影响,2016年在若干地区各投入4万元的宣传费,并将各地的销售收益的数据作了初步处理,得到下面的频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.
(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度,并估计对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(Ⅱ)该公司按照类似的研究方法,测得一组数据如表所示:
表中的数据显示,y与x之间存在线性相关关系,求y关于x的回归直线方程;
(Ⅲ)由(Ⅱ)知,当宣传费投入为10万元时,销售收益大约为多少万元?
附:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度,并估计对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(Ⅱ)该公司按照类似的研究方法,测得一组数据如表所示:
| 宣传费x(单位:万元) | 3 | 2 | 1 | 5 | 4 |
| 销售收益y(单位:万元) | 2 | 3 | 2 | 7 | 5 |
(Ⅲ)由(Ⅱ)知,当宣传费投入为10万元时,销售收益大约为多少万元?
附:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
7.若将函数$y=2sin({2x+\frac{π}{6}})$的图象向左平移$\frac{π}{12}$个单位长度,则平移后图象的对称轴方程为( )
| A. | $x=\frac{kπ}{2}+\frac{π}{12}({k∈Z})$ | B. | $x=\frac{kπ}{2}+\frac{π}{8}({k∈Z})$ | C. | $x=kπ+\frac{π}{12}({k∈Z})$ | D. | $x=kπ+\frac{π}{8}({k∈Z})$ |
1.点M的直角坐标(2$\sqrt{3}$,-2)化成极坐标为( )
| A. | (4,$\frac{5π}{6}$) | B. | (4,$\frac{2π}{3}$) | C. | (4,$\frac{5π}{3}$) | D. | (4,$\frac{11π}{6}$) |
15.函数$f(x)=2sin(ωx+ϕ)(ω>0,-\frac{π}{2}<ϕ<\frac{π}{2})$的部分图象如图所示,则ω,ϕ的值为( )
| A. | $2\;,\;\frac{2π}{3}$ | B. | $2\;,\;-\frac{π}{3}$ | C. | $1\;,\;\frac{π}{12}$ | D. | $1\;,\;-\frac{π}{12}$ |