题目内容

7.若将函数$y=2sin({2x+\frac{π}{6}})$的图象向左平移$\frac{π}{12}$个单位长度,则平移后图象的对称轴方程为(  )
A.$x=\frac{kπ}{2}+\frac{π}{12}({k∈Z})$B.$x=\frac{kπ}{2}+\frac{π}{8}({k∈Z})$C.$x=kπ+\frac{π}{12}({k∈Z})$D.$x=kπ+\frac{π}{8}({k∈Z})$

分析 利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.

解答 解:将函数$y=2sin({2x+\frac{π}{6}})$的图象向左平移$\frac{π}{12}$个单位长度,
可得y=2sin[2(x+$\frac{π}{12}$)+$\frac{π}{6}$]=2sin(2x+$\frac{π}{3}$)的图象,
令2x+$\frac{π}{3}$=kπ+$\frac{π}{2}$,求得x=$\frac{kπ}{2}$+$\frac{π}{12}$,k∈Z,故平移后图象的对称轴方程得x=$\frac{kπ}{2}$+$\frac{π}{12}$,k∈Z,
故选:A.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网