题目内容

已知函数f(x)=axlnx,(a≠0).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)当a<0时,若对于任意的x∈(0,+∞),都有f(x)<3ax+1成立,求a的取值范围.
考点:利用导数研究函数的单调性,利用导数求闭区间上函数的最值
专题:导数的综合应用
分析:(Ⅰ)求出函数的导数,令f′(x)=0,解得x=
1
e
.讨论①当a>0时②当a<0时的情况,从而分别求出其单调区间,
(Ⅱ)当a<0时,对于任意的x∈(0,+∞),都有f(x)<3ax+1成立,设g(x)=axlnx-3ax-1,通过求导得出g(x)min=g(e2)=-ae2-1,从而a>-
1
e2
解答: 解:(Ⅰ)函数f(x的定义域为(0,+∞).
因为f′(x)=a(lnx+1),
令f′(x)=0,解得x=
1
e

①当a>0时,随着x变化时,f(x)和f′(x)的变化情况如下:
x(0,
1
e
1
e
1
e
,+∞)
f′(x)-0+
f(x)
即函数f(x)在(0,
1
e
)上单调递减,在(
1
e
,+∞)上单调递增.
②当a<0时,随着x变化时,f(x)和f′(x)的变化情况如下:
x(0,
1
e
1
e
1
e
,+∞)
f′(x)+0-
f(x)
即函数f(x)在(0,
1
e
)上单调递增,在(
1
e
,+∞)上单调递减.
(Ⅱ)当a<0时,对于任意的x∈(0,+∞),都有f(x)<3ax+1成立,
axlnx<3ax+1.
所以axlnx-3ax-1<0.
设g(x)=axlnx-3ax-1.
因为g′x)=a(lnx-2),
令g′(x)=0,解得x=e2
因为a<0,
所以随着x变化时,g(x)和g′(x)的变化情况如下:
x(0,e2e2(e2,+∞)
g′(x)+0-
g(x)
即函数g(x)在(0,e2)上单调递增,在(e2,+∞)上单调递减.
所以g(x)min=g(e2)=-ae2-1.
所以-ae2-1<0.
所以a>-
1
e2

所以a的取值范围为(-
1
e2
,0).
法二:
当a<0时,对于任意的x∈(0,+∞),都有f(x)<3ax+1成立,
即axlnx<3ax+1.
所以a(xlnx-3x)<1.
1
a
<xlnx-3x.
设g(x)=xlnx-3x.
因为g′(x)=lnx-2,
令g′(x)=0,解得x=e2
所以随着x变化时,g(x)和g′(x)的变化情况如下:
x(0,e2e2(e2,+∞)
g′(x)-0+
g(x)
即函数g(x)在(0,e2)上单调递减,在(e2,+∞)上单调递增.
所以g(x)min=g(e2)=-e2
所以
1
a
<-e2
所以a>-
1
e2

所以a的取值范围为(-
1
e2
,0).
点评:本题考察了函数的单调性,导数的应用,参数的范围,是一道综合题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网