题目内容
已知数列{an}的前n项和为Sn,且Sn=n(n+1),
(1)求数列{an}的通项公式an
(2)数列{bn}的通项公式bn=
,求数列{bn}的前n项和为Tn.
(1)求数列{an}的通项公式an
(2)数列{bn}的通项公式bn=
| 1 |
| an•an+2 |
考点:数列的求和
专题:等差数列与等比数列
分析:(1)当n≥2时,由an=Sn-Sn-1=2n,再求得n=1时a1的值,检验是否满足n≥2时的关系式,从而可得数列{an}的通项公式an;
(2)利用裂项法可得bn=
(
-
),从而可得数列{bn}的前n项和为Tn.
(2)利用裂项法可得bn=
| 1 |
| 8 |
| 1 |
| n |
| 1 |
| n+2 |
解答:
解:(1)n=1时,S1=a1=2…(1分),
n≥2时,an=Sn-Sn-1=n(n+1)-(n-1)n=2n…(3分)
经检验n=1时成立,…(4分)
综上 an=2n…(5分)
(2)由(1)可知bn=
=
×
=
(
-
)…(7分)
Tn=b1+b2+b3+…+bn
=
(1-
+
-
+
-
+…-
+
-
)…(9分)
=
(1+
-
-
)
=
(
-
-
)…(12分)
n≥2时,an=Sn-Sn-1=n(n+1)-(n-1)n=2n…(3分)
经检验n=1时成立,…(4分)
综上 an=2n…(5分)
(2)由(1)可知bn=
| 1 |
| 2n•2(n+2) |
| 1 |
| 4 |
| 1 |
| n•(n+2) |
| 1 |
| 8 |
| 1 |
| n |
| 1 |
| n+2 |
Tn=b1+b2+b3+…+bn
=
| 1 |
| 8 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 8 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 1 |
| 8 |
| 3 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
点评:本题考查数列的求和,着重考查裂项法的应用,(2)中求得bn=
(
-
)是关键,属于中档题.
| 1 |
| 8 |
| 1 |
| n |
| 1 |
| n+2 |
练习册系列答案
相关题目