题目内容
考点:导数的运算
专题:导数的概念及应用
分析:讨论x的符号,根据函数单调性和导数之间的关系即可得到结论.
解答:
解:若x=0时,不等式x•f′(x)<0不成立.
若x>0,则不等式x•f′(x)<0等价为f′(x)<0,此时函数单调递减,由图象可知,此时0<x<1.
若x<0,则不等式x•f′(x)<0等价为f′(x)>0,此时函数单调递增,由图象可知,此时x<-1.,
故不等式x•f′(x)<0的解集为(-∞,-1)∪(0,1).
故答案为:(-∞,-1)∪(0,1).
若x>0,则不等式x•f′(x)<0等价为f′(x)<0,此时函数单调递减,由图象可知,此时0<x<1.
若x<0,则不等式x•f′(x)<0等价为f′(x)>0,此时函数单调递增,由图象可知,此时x<-1.,
故不等式x•f′(x)<0的解集为(-∞,-1)∪(0,1).
故答案为:(-∞,-1)∪(0,1).
点评:本题主要考查不等式的解法,利用函数单调性和导数之间的关系即可得到结论
练习册系列答案
相关题目
已知f(x)=
是R上的奇函数,则f(-2)=( )
| a•2x+a-2 |
| 2x+1 |
A、-
| ||
| B、-2 | ||
| C、1 | ||
D、-
|