题目内容
已知x,y∈R*,x+9y=3,则xy的最大值为 .
考点:基本不等式
专题:计算题,不等式的解法及应用
分析:由基本不等式可得x+9y≥2
,由此可求.
| x•9y |
解答:
解:∵x,y∈R*,
∴x+9y≥2
,即3≥6
,
∴xy≤
,
当且仅当x=9y时取等号,
由
解得x=
,y=
,
∴xy的最大值为
,
故答案为:
.
∴x+9y≥2
| x•9y |
| xy |
∴xy≤
| 1 |
| 4 |
当且仅当x=9y时取等号,
由
|
| 3 |
| 2 |
| 1 |
| 6 |
∴xy的最大值为
| 1 |
| 4 |
故答案为:
| 1 |
| 4 |
点评:该题考查利用基本不等式求函数的最值,注意使用基本不等式求函数最值的条件:一正、二定、三相等.
练习册系列答案
相关题目