题目内容

已知cosα是方程6x2-7x-3=0的根,求
sin(-α-
3
2
π)•sin(
3
2
π-α)•tan2(2π-α)tan(π-α)
cos(
π
2
-α)•cos(
π
2
+α)
的值.
考点:运用诱导公式化简求值,同角三角函数基本关系的运用
专题:三角函数的求值
分析:求出方程的根,利用诱导公式化简所求表达式,然后通过同角三角函数的基本关系式求解即可.
解答: 解:由cosα是方程6x2-7x-3=0的根,可得
cosα=-
1
3
 或cosα=
3
2
(舍),…(3分)
sin(-α-
3
2
π)•sin(
3
2
π-α)•tan2(2π-α)tan(π-α)
cos(
π
2
-α)•cos(
π
2
+α)

=
sin(α+
3
2
π)•sin(
3
2
π-α)•tan2αtanα
-sinα•sinα

=
cosα•cosα•tan3α
-sinα•sinα

=-tanα,…(9分)
由cosα=-
1
3
可知α是第二象限或者第三象限角.
所以tanα=2
2
或-2
2

即所求式子的值为±2
2
. …(12分)
点评:本题考查诱导公式的应用,函数的零点的求法,同角三角函数的基本关系式的应用,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网