题目内容

△ABC中a,b,c为∠A,∠B,∠C的对边,且(2a-c)•cosB=b•cosC,则∠B=
 
考点:余弦定理
专题:解三角形
分析:已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,求出cosB的值,即可确定出B的度数.
解答: 解:已知等式利用正弦定理化简得:(2sinA-sinC)cosB=sinBcosC,
整理得:2sinAcosB=sinBcosC+sinCcosB=sin(B+C)=sinA,
∵sinA≠0,
∴cosB=
1
2

则∠B=60°.
故答案为:60°
点评:此题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网