题目内容

16.已知f(x)为定义在R上的可导函数,且f(x)>f′(x)对于x∈R恒成立.若e为自然对数的底数,则下列关系一定成立的是(  )
A.e2015f(2015)>e2016f(2016)B.e2015f(2015)<e2016f(2016)
C.e2015f(2016)>e2016f(2015)D.e2015f(2016)<e2016f(2015)

分析 构造函数$g(x)=\frac{f(x)}{{e}^{x}}$,通过求导判断其单调性,从而确定选项.

解答 令$g(x)=\frac{f(x)}{{e}^{x}}$,由题意,
则$g′(x)=\frac{f′(x)-f(x)}{{e}^{x}}$<0,
从而g(x)在R上单调递减,
∴g(2016)<g(2015).
即$\frac{f(2016)}{{e}^{2016}}<\frac{f(2015)}{{e}^{2015}}$,
∴e2015f(2016)<e2016f(2015).
故选D.

点评 本题是构造函数的常见类型,大多数题型是结合着选项中的结构和题中的条件来构造函数,形式灵活多变,考生需要多看多做多总结,才容易掌握此题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网